首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
莫(meng)比(bi)乌斯反演--BZOJ2301: [HAOI2011]Problem b
】的更多相关文章
莫(meng)比(bi)乌斯反演--BZOJ2301: [HAOI2011]Problem b
n<=50000个询问,每次问a<=x<=b,c<=y<=d中有多少gcd(x,y)=K的(x,y).a,b,c,d,K<=50000. 这大概是入门题辣..这里记一波笔记 当难以计算f(i)而易于计算他的反演式g(i)时,可以通过计算g(i)->反演得到f(i). 先放莫比乌斯函数的性质:$\sum_{d|i} \mu(d)=\left\{\begin{matrix} 1,i=1\\0,i>1\end{matrix}\right.$,$\sum_{d|i}…
bzoj2301: [HAOI2011]Problem b懵逼乌斯反演
属于结果的和好求但是结果不好求的题 (轻易能得到以k的倍数为最大公约数的对数,但是不好直接求k) 所以一波反演结束 其实反演的时候完全没有反演的感觉,就是不停地恒等变形 算是懵逼乌斯反演最简单的例题 #include <bits/stdc++.h> using namespace std; ],p[];]; int calc(int n,int m) { ;if(n>m) swap(n,m); ,j;i<=n;i=j+) { j=min(n/(n/i),m/(m/i)); ret+…
BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…
BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的,我们通常采用莫比乌斯反演 但是,时间复杂度是O(n*(n/k))的,当复杂度很坏的时候,当k=1时,退化到O(n^2),超时 然后进行分块优化,时间复杂度是O(n*sqrt(n)) #include<cstdio> #include<cstring> #include<queue…
【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000 看这个:http://blog.csdn.net/a_crazy_czy/article/details/50485082 不过有一点点小错误,这里0和1反了. #include<cstdio> #include<algorithm&…
[bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理
题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta) = \sum_{i=1}^{\alpha}\sum_{j=1}^{\beta}[gcd(i, j) = k]\] 令\(A = \{ (x, y) | x < a\}\), \(B = \{(x, y)|y < c\}\), 根据容斥原理, \[|S| = |U| - |A| - |B| +…
bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减,类似二维前缀和.那么问题转化为在1 <= x <= lmtx, 1 <= y <= lmty时gcd(x, y) == k的对数,这个问题在转化一下,转化成1 <= x <= lmtx / k,1 <= y <= lmty / k时x与y互质的对数.莫比乌斯反…
[luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】
传送门:https://www.luogu.org/problemnew/show/P2522 题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 分析 特殊情况和POI2007 ZAP-Queries相同. 接下来的问题就是解决普遍情况,不难得到答案就是\(ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)\),这是容斥原理. 这道题目有毒,int和l…
BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HINT 100%的数据满足:1≤n≤50000,1≤a≤b≤50…
Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b, c<=y<=d. 对于有下界的区间,容易想到用容斥原理做.然后如果直接用Mobius反演定理做,那么每次询问的复杂度是O(n/k),如果k=1的话,那么总体就是O(n^2)的复杂度了,会TLE.这样用到了分快优化,注意到 n/i ,在连续的k区间内存在,n/i=n/(i+k),因此能用分块优化…
题解【bzoj2301 [HAOI2011]Problem b】
Description 求有多少个数对 \((x,y)\) ,满足$ a \leq x \leq b$ ,\(c \leq y \leq d\) ,且 \(\gcd(x,y) = k\),\(\gcd(x,y)\)函数为 \(x\) 和 \(y\) 的最大公约数.多组询问.\(a,b,c,d,k,T \leq 50000\) Solution 莫比乌斯反演的经典题目QAQ 首相将问题转化成前缀上的问题.即需要求出 有多少个数对 \((x,y)\) ,满足$ 1 \leq x \leq a$ ,\…
BZOJ2301 [HAOI2011]Problem b
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k O…
[bzoj2301: [HAOI2011]Problem b] 乞讨
</pre><pre code_snippet_id="507886" snippet_file_name="blog_20141104_2_5383199" name="code" class="cpp">#include <iostream> #include <algorithm> #include <vector> #include <map> #…
BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 436 Solved: 187[Submit][Status] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个…
BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][Status] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一…
P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j=c}^dgcd(i,j)=k\) 像二维前缀和一样容斥一下,输出就完了. 根据luogu某大佬的说法 开longlong的话会TLE.. 代码 //莫比乌斯反演 #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10…
BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 6519 Solved: 3026[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…
Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1…
【笔记篇】不普及向——莫比乌斯反演学习笔记 && 栗题HAOI2011 Problem B
Part0 广告(当然没有广告费) P.S. 这篇文章是边学着边用Typora写的...学完了题A了blog也就呼之欲出了~有latex化式子也非常方便...非常建议喜欢Markdown的dalao们下载个~ Part1 莫比乌斯函数&&莫比乌斯反演 最近一直在做数论不是OvO 然后就一直有莫比乌斯反演这个坑没有填OvO 其实PoPoQQQ的课件已经看过不少遍了OvO 但是数论这东西不动手化式子还是不行的OvO 或许是我菜? 没错,莫比乌斯就是发现那个奇怪的扭曲的环的男人... 对于两个函…
[BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x,y中都有n这个因子就好了,也就是[a/n]*[b/n]个数对(向下取整) 然后设题中所要求的为f[n],很容易得知,F[n]=∑f[d](n|d) 莫比乌斯反演可以得到f[n]=∑μ(d/n)F[d](n|d) 这样是O(n),然而数据范围5*10^4显然不能通过 f[n]=∑μ(d/n)[a/d][b/d]…
【BZOJ2301】Problem b(莫比乌斯反演)
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d, 且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000 思路:第一题反演…… 利用容斥原理将原询问拆成4个,问题就转化为: 1<=i<=trunc(a div k),1<=j<=trunc(b div k),gcd(i,j)=1的(i,j)数对个数 令f(i)表示满足gcd(x,y)=i时(x,…
bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和仍是积性函数,所以f也是积性函数,可以O(n)线性筛求得.总时间复杂度为 具体筛法看代码. 代码: #include<iostream> #include<cstdio> #include<cstring> using namespace std; #define mod…
bzoj2820--莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对. 推导: 设n<=m ans= = 由于gcd(i,j)==1等价于 ans= = 令 T=pt 则ans= 设f(T)= 则f(T)可以用线性筛O(n)预处理出来. ans= 分块就可以了.总时间复杂度为 具体看代码. #include<iostream> #include<cstdio> #include<cstring> u…
luogu4240 毒瘤之神的考验(毒瘤乌斯反演)
link 题意:求出\(\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\),对998244353取模 多组数据,\(T\le 10^4,n,m\le 10^5\). 前置知识:\(\varphi(ij)=\frac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(i,j))}\) 证明:我是口胡呢还是好好证呢还是口胡吧 按照欧拉函数的计算式展开,会发现,左边是\(ij\prod_{p|i \mathrm{\color{green}{…
luogu2257 YY的GCD--莫比乌斯反演
link 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 多组数据T = 10000 N, M <= 10000000 推式子 \(\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=p]\) \(=\sum_p\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}[\gcd(i,j)=1]\) \(=\sum_p\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}\sum_{d|i,d…
【bzoj2301】[HAOI2011]Problem b 莫比乌斯反演
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 22 5 1 5 11 5 1 5 2 Sample Output 143 HINT 100%的数据满足:1≤n≤50000,1≤a≤b≤50000…
bzoj2818: Gcd懵逼乌斯反演
由于是单组数据,强行不分块O(n)过 线性筛部分非常神奇,用了一个奇妙的推导(懒得写了) #include <bits/stdc++.h> using namespace std; ],f[],p[];]; int main() { scanf("%d",&n); mu[]=; ;i<=n;i++) { ,f[i]=; ;j<=m;j++) if((long long)p[j]*i<=(long long)n) { o[p[j]*i]=; ) f[…
【bzoj2301】 HAOI2011—Problem b
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 (题目链接) 题意 给出${a,b,c,d,k}$,${n}$组询问,求$${\sum_{i=a}^{b}\sum_{j=c}^{d} [gcd(i,j)=k]}$$ Solution 莫比乌斯反演,就是一堆公式推啊推. 运用容斥,那么答案就变成了:$${\sum_{i=1}^{b}\sum_{j=1}^{d} [gcd(i,j)=k]-\sum_{i=1}^{b}\sum_{j=1}^{c…
主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空白叫做A[i-1].data+1, 开头和最尾也要这么插,意义是如果取不了A[i-1]了,最早能取的是啥数.要把这些空白也离散化然后扔主席树里啊. 主席树维护每个数A[i]出现的最晚位置(tree[i].data),查询时查询root[R]的树中最早的data<L的节点(这意味着该节点的下标离散化前代…
BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先是把下界作为1.可以化为求 \[\sum_{i=1}^{\lfloor\frac{N}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{M}{k}\rfloor}[(i,j)=1]\] 说明:大概就我不能直接看出来了.. 首先要求\([1,N]\)中有多少\(i,i|k\),再…