Linux作为多任务系统,当一个进程生成的数据传输到另一个进程时,或数据由多个进程共享时,或进程必须彼此等待时,或需要协调资源的使用时,应用程序必须彼此通信. 一.控制机制 1.竞态条件 几个进程在访问资源时彼此干扰的情况通常称之为竞态条件(race condition).在对分布式应用编程时,这种情况是一个主要的问题,因为竞态条件无法通过系统的试错法检测.只有彻底研究源代码(深入了解各种可能发生的代码路径)并通过敏锐的直觉,才能找到并消除竞态条件. 2.临界区 对于竞态条件,其问题的本质是进程…
在上篇博文中笔者分析了关于完成量和互斥量的使用以及一些经典的问题,下面笔者将在本篇博文中重点分析有关RCU机制的相关内容以及介绍目前已被淘汰出内核的大内核锁(BKL).文章的最后对<大话Linux内核中锁机制>系列博文进行了总结,并提出关于目前Linux内核中提供的锁机制的一些基本使用观点. 十.RCU机制 本节将讨论另一种重要锁机制:RCU锁机制.首先我们从概念上理解下什么叫RCU,其中读(Read):读者不需要获得任何锁就可访问RCU保护的临界区:拷贝(Copy):写者在访问临界区时,写者…
在上一篇博文中笔者分析了关于内存屏障.读写自旋锁以及顺序锁的相关内容,本篇博文将着重讨论有关信号量.读写信号量的内容. 六.信号量 关于信号量的内容,实际上它是与自旋锁类似的概念,只有得到信号量的进程才能执行临界区的代码:不同的是获取不到信号量时,进程不会原地打转而是进入休眠等待状态.它的定义是include\linux\semaphore.h文件中,结构体如图6.1所示.其中的count变量是计数作用,通过使用lock变量实现对count变量的保护,而wait_list则是对申请信号量的进程维…
很多人会问这样的问题,Linux内核中提供了各式各样的同步锁机制到底有何作用?追根到底其实是由于操作系统中存在多进程对共享资源的并发访问,从而引起了进程间的竞态.这其中包括了我们所熟知的SMP系统,多核间的相互竞争资源,单CPU之间的相互竞争,中断和进程间的相互抢占等诸多问题. 通常情况下,如图1所示,对于一段程序,我们的理想是总是美好的,希望它能够这样执行:进程1先对临界区完成操作,然后进程2再去操作临界区.但是往往现实总是残酷的,进程1在执行过程中,进程2很可能在此插入一脚,导致两个进程同时…
大话Linux内核中锁机制之RCU.大内核锁 在上篇博文中笔者分析了关于完成量和互斥量的使用以及一些经典的问题,下面笔者将在本篇博文中重点分析有关RCU机制的相关内容以及介绍目前已被淘汰出内核的大内核锁(BKL).文章的最后对<大话Linux内核中锁机制>系列博文进行了总结,并提出关于目前Linux内核中提供的锁机制的一些基本使用观点. 十.RCU机制 本节将讨论另一种重要锁机制:RCU锁机制.首先我们从概念上理解下什么叫RCU,其中读(Read):读者不需要获得任何锁就可访问RCU保护的临界…
大话Linux内核中锁机制之信号量.读写信号量 在上一篇博文中笔者分析了关于内存屏障.读写自旋锁以及顺序锁的相关内容,本篇博文将着重讨论有关信号量.读写信号量的内容. 六.信号量 关于信号量的内容,实际上它是与自旋锁类似的概念,只有得到信号量的进程才能执行临界区的代码:不同的是获取不到信号量时,进程不会原地打转而是进入休眠等待状态.它的定义是include\linux\semaphore.h文件中,结构体如图6.1所示.其中的count变量是计数作用,通过使用lock变量实现对count变量的保…
转至:http://blog.sina.com.cn/s/blog_6d7fa49b01014q7p.html 很多人会问这样的问题,Linux内核中提供了各式各样的同步锁机制到底有何作用?追根到底其实是由于操作系统中存在多进程对共享资源的并发访问,从而引起了进程间的竞态.这其中包括了我们所熟知的SMP系统,多核间的相互竞争资源,单CPU之间的相互竞争,中断和进程间的相互抢占等诸多问题. 通常情况下,如图1所示,对于一段程序,我们的理想是总是美好的,希望它能够这样执行:进程1先对临界区完成操作,…
转自:http://blog.sina.com.cn/s/blog_6d7fa49b01014q7p.html 多人会问这样的问题,Linux内核中提供了各式各样的同步锁机制到底有何作用?追根到底其实是由于操作系统中存在多进程对共享资源的并发访问,从而引起了进程间的竞态.这其中包括了我们所熟知的SMP系统,多核间的相互竞争资源,单CPU之间的相互竞争,中断和进程间的相互抢占等诸多问题. 通常情况下,如图1所示,对于一段程序,我们的理想是总是美好的,希望它能够这样执行:进程1先对临界区完成操作,然…
作者 彭东林 pengdonglin137@163.com 软件 Host: Ubuntu14.04 64 Qemu 2.8.0 Linux 2.6.24 busybox 1.24.2 gcc 4.4.7 概述 为了尽量还原<深入Linux内核架构>这本书的环境,我下载了Linux 2.6.24,由于这个内核版本比较老,所以用最新的gcc编译会有问题,所以需要安装一个比较老的gcc,从该内核的README得知,gcc的版本最少应该是3.2. 正文 一.安装GCC 使用apt-cache sea…
在上一篇博文中笔者分析了关于信号量.读写信号量的使用及源码实现,接下来本篇博文将讨论有关完成量和互斥量的使用和一些经典问题. 八.完成量 下面讨论完成量的内容,首先需明确完成量表示为一个执行单元需要等待另一个执行单元完成某事后方可执行,它是一种轻量级机制.事实上,它即是为了完成进程间的同步而设计的,故而仅仅提供了代替同步信号量的一种解决方法,初值被初始化为0.它在include\linux\completion.h定义. 如图8.1所示,对于执行单元A而言,如果执行单元B不执行complete函…
在上一篇博文中笔者讨论了关于原子操作和自旋锁的相关内容,本篇博文将继续锁机制的讨论,包括内存屏障.读写自旋锁以及顺序锁的相关内容.下面首先讨论内存屏障的相关内容. 三.内存屏障 不知读者是是否记得在笔者讨论自旋锁的禁止或使能的时候,提到过一个内存屏障函数.OK,接下来,笔者将讨论内存屏障的具体细节内容.我们首先来看下它的概念,Memory Barrier是指编译器和处理器对代码进行优化(对读写指令进行重新排序)后,导致对内存的写入操作不能及时的反应到读操作中(锁机制无法保证时序正确).可能读起来…
大话Linux内核中锁机制之完成量.互斥量 在上一篇博文中笔者分析了关于信号量.读写信号量的使用及源码实现,接下来本篇博文将讨论有关完成量和互斥量的使用和一些经典问题. 八.完成量 下面讨论完成量的内容,首先需明确完成量表示为一个执行单元需要等待另一个执行单元完成某事后方可执行,它是一种轻量级机制.事实上,它即是为了完成进程间的同步而设计的,故而仅仅提供了代替同步信号量的一种解决方法,初值被初始化为0.它在include\linux\completion.h定义. 如图8.1所示,对于执行单元A…
大话Linux内核中锁机制之内存屏障.读写自旋锁及顺序锁 在上一篇博文中笔者讨论了关于原子操作和自旋锁的相关内容,本篇博文将继续锁机制的讨论,包括内存屏障.读写自旋锁以及顺序锁的相关内容.下面首先讨论内存屏障的相关内容. 三.内存屏障 不知读者是是否记得在笔者讨论自旋锁的禁止或使能的时候,提到过一个内存屏障函数.OK,接下来,笔者将讨论内存屏障的具体细节内容.我们首先来看下它的概念,Memory Barrier是指编译器和处理器对代码进行优化(对读写指令进行重新排序)后,导致对内存的写入操作不能…
内核锁机制 对整数的原子操作 <asm-arch/atomic.h> typedef struct {volatile int counter;} atomic_t; //初始化只能借助于ATOMIC_INIT宏 atomic_t nmi_active = ATOMIC_INIT(0); atomic_read(atomic_t *v); atomic_set(atomic_t *v,int i); ........ 自旋锁 自旋锁用于保护短的代码段,其中只包含少量C语句,因此会很快执行完毕.…
linux中管道符"|"的作用 命令格式:命令A|命令B,即命令1的正确输出作为命令B的操作对象(下图应用别人的图片) 1. 例如: ps aux | grep "test"  在 ps aux中的結果中查找test. 2. 例如:   find . -name "*.txt" | xargs grep "good" -n --color=auto   把find的结果当成参数传入到grep中,即在那些文件内部查找good关键…
概述 可换出页 只有少量几种页可以换出到交换区,对其他页来说,换出到块设备上与之对应的后备存储器即可,如下所述. 类别为 MAP_ANONYMOUS 的页,没有关联到文件,例如,这可能是进程的栈或是使用 mmap 匿名映射的内存区. 进程的私有映射用于映射修改后不向底层块设备回写的文件,通常换出到交换区. 所有属于进程堆以及使用 malloc 分配的页 用于实现某种进程间通信机制的页.例如,用于在进程之间交换数据的共享内存页. 页颠簸 这个问题涉及交换区和物理内存之间密集的数据传输问题归结为页的…
如果系统只有一个处理器,那么给定时刻只有一个程序可以运行.在多处理器系统中,真正并行运行的进程数目取决于物理CPU的数目.内核和处理器建立了多任务的错觉,是通过以很短的间隔在系统运行的应用程序之间不停切换做到的.由此,以下两个问题必须由内核解决:除非明确要求,否则应用程序不能彼此干扰:CPU时间必须在各种应用程序之间尽可能公平共享(一些程序可能比其他程序更重要).本篇博文主要涉及内核共享CPU时间的方法以及如何在进程之间切换(内核为各进程分配时间,保证切换之后从上次撤销其资源时执行环境完全相同)…
http://blog.chinaunix.net/uid-20543672-id-3252604.html 自旋锁:如果内核配置为SMP系统,自旋锁就按SMP系统上的要求来实现真正的自旋等待,但是对于UP系统,自旋锁仅做抢占和中断操作,没有实现真正的“自旋”.如果配置了CONFIG_DEBUG_SPINLOCK,那么自旋锁按照SMP系统来编译.     但是为什么在UP系统中不需要真正的“带有自旋的”自旋锁呢?其实在理解了自旋锁的概念和由来,这个问题就迎刃而解了.所以我重新查找了关于自旋锁的资…
一.定义: /linux/include/linux/mutex.h   二.作用及访问规则: 互斥锁主要用于实现内核中的互斥访问功能.内核互斥锁是在原子 API 之上实现的,但这对于内核用户是不可见的. 对它的访问必须遵循一些规则:同一时间只能有一个任务持有互斥锁,而且只有这个任务可以对互斥锁进行解锁.互斥锁不能进行递归锁定或解锁.一个互斥锁对象必须通过其API初始化,而不能使用memset或复制初始化.一个任务在持有互斥锁的时候是不能结束的.互斥锁所使用的内存区域是不能被释放的.使用中的互斥…
1. Linux是多任务系统, 支持并发执行若干进程,系统同时真正运行的进程数目不超过CPU的数量,因此内核会按照时间间隔在不同进程之间切换. 2.确定那个进程运行多长时间的过程称为调度. 3.内核启动init进程作为第一个进程,该进程负责进一步的系统初始化操作,并显示登陆提示符或登陆界面.因此init是进程树的根,所有进程都直接或间接来源次进程. 4. 进程不是内核支持的唯一一种程序执行方式,除此以外,还有线程. 5. Linux将虚拟地址空间分为两部分,内核空间和用户空间. 6. Intel…
Linux kernel里面从来就不缺少简洁,优雅和高效的代码 比如,通过限定写入的数据不能溢出和内存屏障实现在单线程写单线程读的情况下不使用锁.因为锁是使用在共享资源可能存在冲突的情况下.还用设置buffer缓冲区的大小为2的幂次方,以简化求模运算,这样求模运算就演变为 (fifo->in & (fifo->size - 1)).通过使用unsigned int为kfifo的下标,可以不用考虑每次下标超过size时对下表进行取模运算赋值,这里使用到了无符号整数的溢出回零的特性.由于指…
页表:用于建立用户进程空间的虚拟地址空间和系统物理内存(内存.页帧)之间的关联. 向每个进程提供一致的虚拟地址空间. 将虚拟内存页映射到物理内存,因而支持共享内存的实现. 可以在不增加物理内存的情况下,将页换出到块设备来增加有效的可用内存空间. 内核内存管理总是假定使用四级页表. 3.3.1 数据结构 内核源代码假定void *和unsigned long long类型所需的比特位数相同,因此他们可以进行强制转换而不损失信息.即:假定sizeof(void *) == sizeof(unsign…
网络命名空间 struct net { atomic_t count; /* To decided when the network * namespace should be freed. */ atomic_t use_count; /* To track references we * destroy on demand */ struct list_head list; /* list of network namespaces *///所有命名空间链接到net_namespace_li…
作为Linux开发爱好者,从事linux 开发有两年多时间.做过bsp移植,熟悉u-boot代码执行流程:看过几遍<linux 设备驱动程序开发>,分析过kernel启动流程,写过驱动,分析过网卡驱动,制作过文件系统.但,仍无法对kernel有全局认识.为了更清晰的展示kernel概念,结构,实现,以思维导图的形式记录关键点,以便以记忆.增强理解.该部分是总体描述,大致介绍内核及其结构.同时也希望其能够帮助对linux 内核感兴趣朋友.…
一.内核的任务 纯技术层面上,内核是硬件与软件的之间的一个中间层.作用是将应用程序的请求传递给硬件,并充当底层驱动程序,对系统中的各种设备和组件进行寻址. 从应用程序视角上看,内核可以被认为是一台增强的计算机,将计算机抽象到一个高层次上.应用程序与硬件本没有联系,只与内核有联系,内核是应用程序所知道的层次结构中的最底层. 当若干程序在同一系统中并发运行时,也可以将内核视为资源管理程序.内核负责将可用共享资源分配到各个系统进程,同时保证系统的完整性. 将内核视为库,其提供了一组面向系统的命令.通常…
3.1 概述 内存管理涵盖了许多领域: 内存中物理内存页的管理: 分配大块内存的伙伴系统: 分配小块内存的slab.slub.slob分配器: 分配非连续内存块的vmalloc机制: 进程的地址空间. Linux内核一般将虚拟地址空间划分为两部分:底部较大的部分用于用户进程,顶部则用于内核.虽然(在两个用户进程之间)上下文切换期间会改变下半部分,但是虚拟地址空间的内核部分中总是不变[这其实很好理解,内核是系统管理员,不能说因为每换一批游客,景区管理员都得跟着换一批?!].在IA-32系统上,虚拟…
linux内核分析--CFS(完全公平调度算法)   1.1 CFS原理 cfs定义了一种新的模型,它给cfs_rq(cfs的run queue)中的每一个进程安排一个虚拟时钟,vruntime.如果一个进程得以执行,随着时间的增长(也就是一个个tick的到来),其vruntime将不断增大.没有得到执行的进程vruntime不变.    而调度器总是选择vruntime跑得最慢的那个进程来执行.这就是所谓的"完全公平".为了区别不同优先级的进程,优先级高的进程vruntime增长得慢…
我们大概都了解,锁这种机制其实是为了保护临界区代码的,关于使用和定义,我总结的API如下: #include <linux/spinlock.h> 定义自旋锁 spinlock_t lock; 初始化自旋锁 void spin_lock_init(spinlock_t *lock); 获取自旋锁 void spin_lock(spinlock_t *lock); int spin_trylock(spinlock_t *lock); 返回非0成功获取锁 不可抢占内核: 两个函数都是空操作 单C…
中断 中断类型 同步中断和异常.这些由CPU自身产生,针对当前执行的程序 异步中断.这是经典的中断类型,由外部设备产生,可能发生在任意时间. 在退出中断中,内核会检查下列事项. 调度器是否应该选择一个新进程代替旧的进程. 是否有信号必须投递到原进程. 数据结构 IRQ相关信息管理的关键点是一个全局数组,每个数组项对应一个IRQ编号.因为数组位置和中断号是相同的,很容易定位与特定的IRQ相关的数组项:IRQ 0在位置0,IRQ 15在位置15,等等.IRQ最终映射到哪个处理器中断,在这里是不相关的…
VFS的任务并不简单.一方面,它用来提供了一种操作文件.目录及其他对象的统一方法.另一方面,它必须能够与各种方法给出的具体文件系统的实现达成妥协,这些实现在具体细节.总体设计方面都有一些不同之处. 文件系统类型 基于磁盘的文件系统 虚拟文件系统 网络文件系统 通用文件模型 在处理文件时,内核空间和用户空间使用的主要对象是不同的.对用户程序来说,一个文件由一个文件描述符标识.内核处理文件的关键是inode. inode 目录只是一个特殊的文件. inode的成员可能分为下面两类. 描述文件状态的元…