Akka源码分析-Serialization】的更多相关文章

今天我们来谈一下akka的序列化框架,其实序列化.反序列化是一个老生常谈的问题,那么我们为什么还要研究一下akka的序列化框架呢?不就是使用哪种序列化.反序列化方法的区别么?其实刚开始的时候我也是这么想的,但是针对性.系统性的分析一下akka的序列化.反序列化过程,就会发现这个问题其实还是挺有意思的. 我们首先来看下什么是序列化.反序列化.序列化 (Serialization)将对象的状态信息转换为可以存储或传输的形式的过程:反序列化,就是通过从存储区中读取或反序列化对象的状态,重新创建该对象.…
对不起,akka typed 我是不准备进行源码分析的,首先这个库的API还没有release,所以会may change,也就意味着其概念和设计包括API都会修改,基本就没有再深入分析源码的意义了.另外这个typed actor跟OOP的class差别还是很大的,目前的API还是很丑的,至少我看着非常别扭啊.如果各位读者对这个有兴趣,去谷歌一下,看看它一些简单的介绍就好了,千万不要在生产使用. 不过我们也可以分析一下akka typed出现的原因.在我们会用actor开发的时候一定会遇到这样的…
今天我们来讲解akka-streams,这应该算akka框架下实现的一个很高级的工具.之前在学习akka streams的时候,我是觉得云里雾里的,感觉非常复杂,而且又难学,不过随着对akka源码的深入,才逐渐明白它到底是怎么一回事.下面介绍主要摘自akka官网,但会融入我的理解,以及部分源码,以减少大家学习的难度. 首先近几年流式计算很火,有各种各样的框架,比如spark.storm.flink等,当然前提是我们得有这样的需求.随着数据量越来越大,我们很难一次性处理全部的数据,只能采用流水线或…
一个应用软件维护的后期一定是要做监控,akka也不例外,它提供了集群模式下的度量扩展插件. 其实如果读者读过前面的系列文章的话,应该是能够自己写一个这样的监控工具的.简单来说就是创建一个actor,它负责收集节点的性能信息,然后用eventStream或者PUB/SUB把消息发布出去,需要这个信息的actor或者router订阅,然后根据信息做响应的操作就好了.当然了,akka估计也是这样做的,因为在akka里面一切都是actor. akka实现的Metrics扩展能够搜集系统性能指标,并能够把…
在ClusterClient源码分析中,我们知道,他是依托于“Distributed Publish Subscribe in Cluster”来实现消息的转发的,那本文就来分析一下Pub/Sub是如何实现的. 还记得之前分析Cluster源码的文章吗?其实Cluster只是把集群内各个节点的信息通过gossip协议公布出来,并把节点的信息分发出来.但各个actor的地址还是需要开发者自行获取或设计的,比如我要跟worker通信,那就需要知道这个actor在哪个节点,通过actorPath或ac…
akka Cluster基本实现原理已经分析过,其实它就是在remote基础上添加了gossip协议,同步各个节点信息,使集群内各节点能够识别.在Cluster中可能会有一个特殊的节点,叫做单例节点.也就是具有某个角色的节点在集群中只能有一个,如果这个节点宕机了,需要把这个角色的工作转移到其他节点. 使用单例模式有几个场景. 负责集群的一致性决策,跨集群协调工作.比如集群事务. 对外部系统的单实例接入. 一个master,多个worker 集中化的命名服务或路由策略. 官网说单例对象在设计时,永…
在学习akka过程中,我们了解了它的监督机制,会发现actor非常可靠,可以自动的恢复.但akka框架只会简单的创建新的actor,然后调用对应的生命周期函数,如果actor有状态需要回复,我们需要hook对应的生命周期函数,自己恢复状态.但此时恢复的只是初始状态,如果actor在接收消息过程中,状态发生了变化,为了保证可恢复就需要我们自行把状态保存在第三方组件了.考虑到通用性以及Actor模型的特点,akka提供了持久化机制,可以帮助我们做状态恢复. 其实,actor的状态千差万别,怎么来统一…
生命周期监控,也就是死亡监控,是akka编程中常用的机制.比如我们有了某个actor的ActorRef之后,希望在该actor死亡之后收到响应的消息,此时我们就可以使用watch函数达到这一目的. class WatchActor extends Actor { val child = context.actorOf(Props.empty, "child") context.watch(child) // <-- this is the only call needed for…
前面几篇博客,我们依次介绍了local和remote的一些内容,其实再分析cluster就会简单很多,后面关于cluster的源码分析,能够省略的地方,就不再贴源码而是一句话带过了,如果有不理解的地方,希望多翻翻之前的博客. 在使用cluster时,配置文件中的akka.actor.provider值是cluster,所以ActorSystem对应的provider就是akka.cluster.ClusterActorRefProvider. /** * INTERNAL API * * The…
使用过akka的应该都知道,默认情况下,消息是按照最多一次发送的,也就是tell函数会尽量把消息发送出去,如果发送失败,不会重发.但有些业务场景,消息的发送需要满足最少一次,也就是至少要成功发送一次.akka在Persistence的基础之上提供了at-least-once传递的语法. 简单来说akka中的at-least-once机制,会在规定时间内等待消息接收成功的确认消息.如果收到,则发送成功:否则,尝试重发:超过重试次数则不再重发. 其实如果不看akka的源码,让我们自己来实现至少一次的…