在使用fast rcnn以及faster rcnn做检测任务的时候,涉及到从图像的roi区域到feature map中roi的映射,然后再进行roi_pooling之类的操作.比如图像的大小是(600,800),在经过一系列的卷积以及pooling操作之后在某一个层中得到的feature map大小是(38,50),那么在原图中roi是(30,40,200,400),在feature map中对应的roi区域应该是roi_start_w = round(30 * spatial_scale);r…
利用Java提供的Random类.从List或Set中随机取出一个元素,从Map中随机获取一个key或value. 因为Set没有提供get(int index)方法,仅仅能先获取一个随机数后.利用一个计数器,对Set进行循环,当计数器等于随机数时返回当前元素,对于Map的处理也类似. 不知有没有更好的方法-- package com.xjj.util; import java.util.List; import java.util.Map; import java.util.Set; impo…
protected <V> V getValFromMap(Map<String, Object> headers, String name, Class<V> type) { Object value = headers.get(name); if (value == null) { return null; } if (!type.isAssignableFrom(value.getClass())) { if (logger.isWarnEnabled()) {…
写在前面:下面讨论中Kernel Size为奇数,因为这样才能方便一致的确认Kernel中心. 在Fast RCNN中,为了大大减少计算量,没有进行2k次运算前向运算,而是进行了1次运算,然后在从pool5中crop出SS图片所对应的Feature map,这里详细的介绍一下是如何实现的.在CNN中下一层Feature map大小的计算中已经提到了如何down to up来计算Feature map,其中最关键的部分就是除了最后一个的长度是K以外,前面所有的长度都是S. 下面先画一个图来描述具体…
1.roi pooling 将从rpn中得到的不同Proposal大小变为fixed_length output, 也就是将roi区域的卷积特征拆分成为H*W个网格,对每个网格进行maxpooling,然后就能得到固定大小的特征. 2.roi align 从原图的proposal映射回feature map,从原图到特征图直接的ROI映射使用双线性插值 形状不变 3.roi wrap 将fearure map 剪切一块,然后wrap到固定大小,采用长度和宽度两个方向的双线性插值. 形状改变 4.…
目录 简介 Library Mapping Function Mapping Invocation Mapping 防止VM崩溃 性能考虑 总结 简介 不管是JNI还是JNA,最终调用的都是native的方法,但是对于JAVA程序来说,一定需要一个调用native方法的入口,也就是说我们需要在JAVA方法中定义需要调用的native方法. 对于JNI来说,我们可以使用native关键字来定义本地方法.那么在JNA中有那些在JAVA代码中定义本地方法的方式呢? Library Mapping 要想…
Java中List,ArrayList.Vector,map,HashTable,HashMap区别用法 标签: vectorhashmaplistjavaiteratorinteger ArrayList 和Vector是采用数组方式存储数据,此数组元素数大于实际存储的数据以便增加和插入元素,都允许直接序号索引元素,但是插入数据要设计到数组元素移动 等内存操作,所以索引数据快插入数据慢,Vector由于使用了synchronized方法(线程安全)所以性能上比ArrayList要差,Linke…
在做项目的过程中,经常需要处理excel数据,特别是和业务人员配合时,业务人员喜欢使用excel处理一些数据,然后交给我们技术人员进行程序处理.利用POI读取写入excel数据,是经常使用的一个情景.本文介绍的是另外一种情景,是把excel表中的数据作为配置文件,也就是数据是键值对的情景.这种数据可以在java程序中保存为properties文件或者保存到Map中,然后在程序中使用这些数据. 1 数据在excel中的处理 键值对类型的数据在excel中,键和值各占一列,比如键在A列,对应的值在B…
来自论文An efficient and coordinated mapping algorithm in virtualized SDN networks,来自期刊<信息与电子工程前沿> 1.Introduction 这篇文章关注于虚拟SDN网络中的映射技术.不同于先前的工作,这篇文章是第一个考虑了控制器放置和VN映射作为结合的vSDN映射问题,并用公式表达它为多目标整形线性规划问题(integer linear programming ILP)来优化控制器到交换机时延和映射的花费.设计了一…
神经网络中的不变性 原文:https://blog.csdn.net/voxel_grid/article/details/79275637     个人认为cnn中conv层对应的是“等变性”(Equivariance),由于conv层的卷积核对于特定的特征才会有较大激活值,所以不论 上一层特征图谱(feature map)中的某一特征平移到何处,卷积核都会找到该特征并在此处呈现较大的激活值.这应该就是“等变性” 这种“等变性”是由conv层的 1局部连接 2权值共享 两个特性得到的. 所谓的…
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者介绍:高成才,腾讯Android开发工程师,2016.4月校招加入腾讯,主要负责企鹅电竞推流SDK.企鹅电竞APP的功能开发和技术优化工作.本文发表于QQ会员技术团队的专栏 本文主要是对CS231n课程学习笔记的提炼,添加了一些Deep Learning Book和Tensorflow 实战,以及Caffe框架的知识. 一.卷积神经网络 1.1 卷积神经网络与常规神经网络 1.1.1 相同点 卷积网络是一种专门用来处理具有类似网格结构…
卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀.CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF Net到VGG,GoogLeNet再到ResNet和最近的DenseNet,网络越来越深,架构越来越复杂,解决反向传播时梯度消失的方法也越来越巧妙.新年有假期,就好好总结一波CNN的各种经典架构吧,领略一下CNN的发展历程中各路大神之间的智慧碰撞之美. 上面那图是ILSVRC历年的Top-5错误率,…
Faster-RCNN论文中在RoI-Head网络中,将128个RoI区域对应的feature map进行截取,而后利用RoI pooling层输出7*7大小的feature map.在pytorch中可以利用: torch.nn.functional.adaptive_max_pool2d(input, output_size, return_indices=False) torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)…
卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀.CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF Net到VGG,GoogLeNet再到ResNet和最近的DenseNet,网络越来越深,架构越来越复杂,解决反向传播时梯度消失的方法也越来越巧妙.新年有假期,就好好总结一波CNN的各种经典架构吧,领略一下CNN的发展历程中各路大神之间的智慧碰撞之美. 上面那图是ILSVRC历年的Top-5错误率,…
ImageNet Classification with Deep Convolutional Neural Networks 从AlexNet剖析-卷积网络CNN的一般结构 AlexNet是Hinton和他的学生Alex Krizhevsky在12年ImageNet Challenge使用的模型结构,刷新了Image Classification的几率,从此deep learning在Image这块开始一次次超过state-of-art,甚至于搭到打败人类的地步,看这边文章的过程中,发现了很多…
在上篇博客中,我们聊了<JavaEE开发之SpringMVC中的自定义拦截器及异常处理>.本篇博客我们继续的来聊SpringMVC的东西,下方我们将会聊到js.css这些静态文件的加载配置,以及服务器推送的两种实现方式.当然我们在服务器推送时,会用到JQuery的东西,所以我们先聊一下如何加载静态资源文件,然后我们再聊如何实现服务器推送. 下方给出了两种实现服务器推送的方式,一种是SSE(Server Send Event (服务端推送事件))另一种是基于Servlet异步处理的推送,下方会给…
上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得了第2名的成绩(第一名是GoogLeNet,也是同年提出的).在论文<Very Deep Convolutional Networks for Large-Scale Image Recognition>中,作者提出通过缩小卷积核大小来构建更深的网络. Vgg网络结构 VGGnet是Oxford的…
概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexNet的一些问题,并在AlexNet基础上做了一些改进,使得网络达到了比AlexNet更好的效果.同时,作者用"消融方法"(ablation study)分析了图片各区域对网络分类的影响(通俗地说,"消融方法"就是去除图片中某些区域,分析网络的性能). 反卷积神经网络(D…
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
现代办公要将纸质文档转换为电子文档的需求越来越多,目前针对这种应用场景的系统为OCR系统,也就是光学字符识别系统,例如对于古老出版物的数字化.但是目前OCR系统主要针对文字的识别上,对于出版物的版面以及版面文字的格式的恢复,并没有给出相应的解决方案.对于版面恢复中主要遇到的困难是文字字体的恢复.对于汉字字体识别问题,目前主要有几种方法,但是都是基于人工特征提取的方法.以往的方法主要分为两大类,第一种为整体分析法,将一整片数据看做采用小波纹理分析抽取字体特征用于分类:使用滤波器提取文字的全局文字特…
卷积神经网络 LeNet-5各层参数详解 LeNet论文阅读:LeNet结构以及参数个数计算     LeNet-5共有7层,不包含输入,每层都包含可训练参数:每个层有多个Feature Map,每个FeatureMap通过一种卷积滤波器提取输入的一种特征,然后每个FeatureMap有多个神经元. 1. C1层是一个卷积层 输入图片:32*32 卷积核大小:5*5 卷积核种类:6 输出featuremap大小:28*28 (32-5+1) 神经元数量:28*28*6 可训练参数:(5*5+1)…
CNN中feature map.卷积核.卷积核的个数.filter.channel的概念解释 参考链接: https://blog.csdn.net/xys430381_1/article/details/82529397 作者写的很好,解决了很多基础问题. feather map理解 这个是输入经过卷积操作后输出的结果,一般都是二维的多张图片,在论文图上都是以是多张二维图片排列在一起的(像个豆腐皮一样),它们其中的每一个都被称为\(feature \quad map\) feather map…
本例子用到了minst数据库,通过训练CNN网络,实现手写数字的预测. 首先先把数据集读取到程序中(MNIST数据集大约12MB,如果没在文件夹中找到就会自动下载): mnist = input_data.read_data_sets('data/MNIST_data', one_hot=True) Extracting data/MNIST/train-images-idx3-ubyte.gzExtracting data/MNIST/train-labels-idx1-ubyte.gzExt…
个人学习CNN的一些笔记,比较基础,整合了其他博客的内容 feature map的理解在cnn的每个卷积层,数据都是以三维形式存在的.你可以把它看成许多个二维图片叠在一起(像豆腐皮竖直的贴成豆腐块一样),其中每一个称为一个feature map. feature map 是怎么生成的?输入层:在输入层,如果是灰度图片,那就只有一个feature map:如果是彩色图片(RGB),一般就是3个feature map(红绿蓝) [ 下图中三大部分依次是输入RGB图片,卷积核(也称过滤器),卷积结果(…
在前面的两篇博客中,我们介绍了DNN(深度神经网络)并使用keras实现了一个简单的DNN.在这篇博客中将介绍CNN(卷积神经网络),然后在下一篇博客中将使用keras构建一个简单的CNN,对cifar10数据集进行分类预测. CNN简介 我们可以想一个例子,假如我们现在需要对人进行识别分类,根据我们人类的思维,我们肯定是比较他的…
简介 在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数据集进行训练. 如果对keras不是很熟悉的话,可以去看一看官方文档.或者看一看我前面的博客:数据挖掘入门系列教程(十一)之keras入门使用以及构建DNN网络识别MNIST,在数据挖掘入门系列教程(十一)这篇博客中使用了keras构建一个DNN网络,并对keras的做了一个入门使用介绍. CIFA…
keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD,Adam from keras.regularizers imp…
如果是用xml的方式配置映射,可以在<column>标签的sql-type属性中设置char(2),比如: <property name="age" type="java.lang.String"> <column name="age" sql-type="char(2)"></column> </property>   如果是注解的话,需要使用@Column的col…
ReferentialConstraint 中的依赖属性映射到由存储生成的列 这个问题是由于从表中的外键关系建立错误(可能是由于误改),查看从表的所有外键关系,即可找到问题所在. 问题: 什么是从表?什么是主表? 主键所在的表叫主表,外键所在的表叫从表. 从表的外键所在的那个字段的值必须是主表的主键所在的字段里面已经存在了的.…