NOI数论姿势瞎总结(Pi也没有)】的更多相关文章

Miller-Rabin素数检测 费马小定理:没人不会吧. 二次探测:如果\(n\)是质数,\(x^2 \equiv 1\ (\mod n)\)的解只有\(x \equiv 1\)或\(x \equiv n-1\ (\mod n)\). 实现方法: 选取一些质数.\(n\)不超过\(3 \times 10^{18}\)的时候只需要\(2 \sim 23\),\(n\)在unsigned long long范围内时只需要\(2 \sim 37\).对于每个质数: 使用费马小定理的逆否定理检测. 此…
B. Duff in Love time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Duff is in love with lovely numbers! A positive integer x is called lovely if and only if there is no such positive integer…
$umm$先预警下想入门$FFT$就不要康我滴学习笔记了,,, 就,我学习笔记基本上是我大概$get$之后通过写$blog$加强理解加深记忆这样儿的,有些姿势点我可能会直接$skip$什么的,所以对除了我以外的所有人都十分不友好…
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论姿势: 1.扩展欧拉定理 //我们熟知的费马小定理用于p是质数,欧拉定理用于a,p互质,而这道题都不满足这个限制 当\((b>=\phi(p))\)时,\(a^b=a^{b\mod \phi(p) + \phi(p)}\) 2.(其实不算数论姿势)一个数最多经过log此\(\phi\)就会变成1 所…
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1513 Solved: 1154 [Submit][Status][Discuss] Description Input 只有一行一个整数 N(0 < N < 1000000). Output 只有一行输出,为整数M,即f(1)到f(N)的累加和. Sample Input 3 Sample Output 5 HINT Source Day2 奇…
题意 出题人吃华 莱 士拉肚子了,心情不好,于是出了一道题面简单的难题. 共 T T T 组数据,对正整数 n n n 求 F ( n ) = ∑ i = 1 n μ 2 ( i ) i F(n)=\sum_{i=1}^n \mu^2(i)i F(n)=i=1∑n​μ2(i)i 对 2 64 2^{64} 264 取模的结果. n ≤ 1 0 14 , T ≤ 100. n\leq 10^{14},T\leq100. n≤1014,T≤100. 题解 莫比乌斯函数的平方,说明我们求的是 1 ∼…
这题设$f(i)$为$gcd(i,j)=x$的个数,根据容斥原理,我们只需减掉$f(i×2),f(i×3)\cdots$即可 那么这道题:$$ans=\sum_{i=1}^n(f(i)×((i-1)×2+1))$$ 注意要开$longlong$,否则会炸 #include<cstdio> #include<algorithm> using namespace std; long long f[100003]; int main(){ int n,m; long long k=0;…
题目链接 https://cn.vjudge.net/problem/UVA-571 分析 刚做了道倒水问题的题想看看能不能水二倍经验,结果发现了这道题 题意翻译:https://www.cnblogs.com/devymex/archive/2010/08/04/1792288.html 设A容量\(x\),B容量\(y\) 我们把将水倒入A视为\(+x\),将倒空B视为\(-y\),若A满,就倒入B视为\(-x\) 由于\(a,b\)是互质的,根据裴蜀定理一定有\(x,y\)保证有\(ax+…
神题! 一眼powerful number 复习了一下+推半天. 可以发现G函数只能为\(\sum_{d}[d|x]d\) 不断的推 可以发现最后需要求很多块G函数的前缀和 发现只有\(\sqrt(n)\)的复杂度. 于是自闭了.不过这个做法可以跑过\(1e9\) 第二个subtask没有那么严格所以可以跑过 不过我CE了2333... 也没考虑\(min_25\)筛 可能学的不太精通.. 正解是发现 \(f(n)=(p^{k1}+1)(p^{k2}+1)...\) 然后 将其展开 求每个数字对…
题面 一根长为 n 的无色纸条,每个位置依次编号为 1,2,3,-,n ,m 次操作,第 i 次操作把纸条的一段区间 [l,r] (l <= r , l,r ∈ {1,2,3,-,n})涂成颜色 i ,最后一定要把纸条涂满颜色,问最终的纸条有多少种可能的模样. 输入为两个数 n,m ,输出为你的答案 m <= n <= 1e6 题解 不考虑先前染的颜色被覆盖这件事情.如果某种颜色在最终的序列中出现了 x 次,那么我们就直接认为在染这种颜色的时候,我们只染了 x 个格子. 但这样一来每次染…