sklearn.feature_extraction.DictVectorizer】的更多相关文章

sklearn.featture_extraction.DictVectorizer: 将特征与值的映射字典组成的列表转换成向量. DictVectorizer通过使用scikit-learn的estimators,将特征名称与特征值组成的映射字典构成的列表转换成Numpy数组或者Scipy.sparse矩阵. 当特征的值是字符串时,这个转换器将进行一个二进制One-hot编码.One-hot编码是将特征所有可能的字符串值构造成布尔型值.例如: 特征f有一个值ham,一个值spam,转换后会变成…
sklearn.feature_extraction.DictVectorizer:将字典组成的列表转换成向量.(将特征与值的映射字典组成的列表转换成向量) 1. 特征矩阵行代表数据,列代表特征,0表示该数据没有该特征 from sklearn.feature_extraction import DictVectorizer # 设置sparse=False获得numpy ndarray形式的结果 v = DictVectorizer(sparse=False) D = [{'foo':1, '…
sklearn.feature_extraction.FeatureHasher(n_features=1048576, input_type="dict", dtype=<class 'numpy.float64'>, alternate_sign=True, non_negative=False): 特征散列化的实现类. 此类将符号特性名称(字符串)的序列转换为scipy.sparse矩阵,使用哈希函数计算与名称对应的矩阵列.使用的散列函数是带符号的32位版本的Murm…
TfidfVectorizer函数主要用于,将文档(句子)等通过 tf-idf值来进行表示,也就是用一个tf-idf值的矩阵来表示文档(句子也可). from sklearn.feature_extraction.text import TfidfVectorizer 1. 其函数源代码很长,这里只展示: class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a…
CountVectorizer: CountVectorizer可以将文本文档集合转换为token计数矩阵.(token可以理解成词) 此实现通过使用scipy.sparse.csr_matrix产生了计数的稀疏表示. 如果不提供一个先验字典,并且不使用进行某种特征选择的分析器,那么特征的数量将与通过分析数据得到的词汇表的大小一致. 参数: input: 默认content 可选 filename.file.content 如果是filename,传给fit的参数必须是文件名列表 如果是file…
零.机器学习整个实现过程: 一.机器学习数据组成 特征值: 目标值: 二.特征工程和文本特征提取 1.概要: 1.特征工程是什么 2.特征工程的意义:直接影响预测结果 3.scikit-learn库 介绍 4.数据的特征抽取 5.数据的特征预处理 6.数据的降维 [特征工程]:特征工程是将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的预测准确性 (如图:文章转为数据即是一个特征工程) 2.特征工程工具: 1.pandas:一个数据读取非常方便以及基本的处理格式的工…
写在前面 这篇博客主要内容: 应用DictVectorizer实现对类别特征进行数值化.离散化 应用CountVectorizer实现对文本特征进行数值化 特征提取API sklearn.feature_extraction 字典特征提取 作用:对字典数据进行特征值化 sklearn.feature_extraction.DictVectorizer(sparse=True,-) DictVectorizer.fit_transform(X) X:字典或者包含字典的迭代器返回值:返回sparse…
本章中,你会假装作为被一家地产公司刚刚雇佣的数据科学家,完整地学习一个案例项目.下面是主要步骤: 项目概述. 获取数据. 发现并可视化数据,发现规律. 为机器学习算法准备数据. 选择模型,进行训练. 微调模型. 给出解决方案. 部署.监控.维护系统. 使用真实数据 学习机器学习时,最好使用真实数据,而不是人工数据集.幸运的是,有上千个开源数据集可以进行选择,涵盖多个领域.以下是一些可以查找的数据的地方: 流行的开源数据仓库: UC Irvine Machine Learning Reposito…
[占位-未完成]scikit-learn一般实例之十一:异构数据源的特征联合 Datasets can often contain components of that require different feature extraction and processing pipelines. This scenario might occur when: 1.Your dataset consists of heterogeneous data types (e.g. raster image…
学习框架 特征工程(Feature Engineering) 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已 什么是特征工程: 帮助我们使得算法性能更好发挥性能而已 sklearn主要用于特征工程pandas主要用于数据清洗.数据处理 特征工程包含如下3个内容: 1.特征抽取/特征提取 |__>字典特征抽取,应用DiceVectorizer实现对类别特征进行数值化.离散化 |__>文本特征抽取,应用CounterVertorize/TfIdfVectorize实现对文本特征数…