斯托克斯公式(Stokes' theorem)】的更多相关文章

参考:http://spaces.ac.cn/archives/4062/ 参考:https://en.wikipedia.org/wiki/Exterior_derivative 比如Ω是一个曲面(可定向的流行),∂Ω是其边界.w是一个微分形式,dw是一个外微分.…
1. 几种形式 ∮∂SPdx+Qdy+Rdz=∬S∣∣∣∣∣∣cosα∂∂xPcosβ∂∂yQcosγ∂∂zR∣∣∣∣∣∣dS ∮∂Ωw=∬Ωdw 左边是内积: 右边是外积: 物理上的应用: ∮∂SE⃗ ⋅dℓ⃗ =∬S(∇×E⃗ )⋅dA⃗  场函数 E⃗  沿边界曲线(Γ=∂S),等于其旋度(\nabla\times \vec E\right)在曲面 S 的二重积分:…
原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果沿着L前进,左边是D的内部区域,那么此时的L定义为正方向. 利用格林公式求面积的方法:曲线围成的区域的面积为: 格林是十八世纪英国自学成才的数学家,他只上过一年学.1828年格林三十五岁的时候,把他当时对数学的研究写成小册子分发给民众.五年后,在一位乡野数学家的帮助下,他得以进入了剑桥大学学习.但是…
Binet-Cauchy 公式 我们知道,方阵的行列式不是方阵的线性函数,即对 \(\forall \lambda\in F,A,B\in F^{n\times n}\),有 \(det(A+B)\neq detA+detB\) 和 \(det(\lambda A)\neq \lambda detA\):而方阵的行列式是方阵的可乘函数,即 \(det(AB)=detA\cdot detB\). 那么如果 \(A,B\) 不是方阵,而是长方矩阵,那么就可以推广得到 Cauchy-Binet 公式.…
The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignments and sliders which are good for you to understand ddg. ------------------------------------------------------------- DISCRETE DIFFERENTIAL GEOMETRY :…
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源:知乎 Benson Farb:晨兴通俗报告How to do Mathematics文稿(z) 晨兴通俗报告How to do Mathematics文稿(任金波整理,欢迎纠错) 以下是我整理并翻译成汉语的,本人才疏学浅,有些地方实在没听懂,其余部分难免也有很多错误,翻译的汉语对演讲者的意思的传达…
一直以来都对物理效果有神秘感,完全不知道怎么实现的.直到看到了周银辉在老早前写的一篇博客:http://www.cnblogs.com/zhouyinhui/archive/2007/06/23/793724.html 终于知道是怎么实现的了. CompositionTarget类的Rendering事件.在每一帧成功渲染时触发.这样就能在极短的时间内对对象进行更细致的操作,以达到预期效果. 然而博客里并没有介绍得出结果公式的过程,导致我真的一头雾水了,所以决定重新写一下,分享给感兴趣的人. 先…
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方法. Cayley-Hamilton theorem: 记矩阵A的特征多项式为f(x). 则有f(A)=0. 证明可以看 维基百科 https://en.wikipedia.org/wiki/Cayley–Hamilton_theorem#A_direct_algebraic_proof 另外我在高…
Matrix_tree Theorem: 给定一个无向图, 定义矩阵A A[i][j] = - (<i, j>之间的边数) A[i][i] = 点i的度数 其生成树的个数等于 A的任意n - 1阶主子式的值. 关于定理的相关证明 可以看这篇文章, 讲得非常详细, 耐心看就能看懂: 关于求行列式, 可以用高斯消元. 如果是模域下求行列式, 可以用欧几里得算法. 具体实现看这篇文章 模域下求行列式 模板题:SPOJ DETER3 代码: #include <cstdio> #inclu…
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会有概率 贝叶斯的基础就是条件概率,条件概率的核心就是可能性空间的缩小,获取了新的信息就是个可能性空间缩小的过程 贝叶斯定理的核心就是,先验*似然=后验,有张图可以完美可视化这个定理 只要我们能得到可靠的先验或似然,任意一个,我们就能得到更可靠的后验概率 最近又在刷一个Coursera的课程:Baye…