ML&MLDS笔记:偏差 vs 方差】的更多相关文章

原文地址:https://www.jianshu.com/p/a02c6bd5d5e9 error来自哪?来自于偏差Bias和方差Variance. 就如打靶时瞄准一个点\(\overline{f}\),打出的点\(f^*\)分布在该点周围.那么,\(\overline{f}\)与实际靶心\(\hat{f}\)的距离就是偏差Bias,打出的点\(f^*\)与\(\overline{f}\)的分布距离就是方差Variance. 可将偏差理解为没瞄准,方差理解为瞄准了但是打得太散. 简单模型的方差小…
[ML学习笔记] 回归分析(Regression Analysis) 回归分析:在一系列已知自变量与因变量之间相关关系的基础上,建立变量之间的回归方程,把回归方程作为算法模型,实现对新自变量得出因变量的关系. 回归与分类的区别:回归预测的是连续变量(数值),分类预测的是离散变量(类别). 线性回归 线性回归通过大量的训练出一个与数据拟合效果最好的模型,实质就是求解出每个特征自变量的权值θ. 设有特征值x1.x2(二维),预测值 $ h_\theta(x)=\theta_0 + \theta_1x…
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支. 一棵决策树的组成:根节点.非叶子节点(决策点).叶子节点.分支 算法分为两个步骤:1. 训练阶段(建模) 2. 分类阶段(应用) 熵的概念 设用P(X)代表X发生的概率,H(X)代表X发生的不确定性,则有:P(X)越大,H(X)越小:P(X)越小,H(X)越大. 信息熵的一句话解释是:消除不确定性的程度…
Error | 误差 Bias | 偏差 – 衡量准确性 Variance | 方差 – 衡量稳定性 首先我们通常在实际操作中会直接用错误率或者与之对应的准确率来衡量一个模型的好坏,但是更加准确的做法是误差衡量时综合考虑偏差和方差的共同作用. 所谓偏差Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度.Variance反映的是模型每一次输出结果与模型输出期望值之间的误差,即模型的稳定性. 举个例子,对于一个二分类问题,比如测试图片是不是猫,是猫的话就是1,不是猫就是2. 现…
本文根据水库中蓄水标线(water level) 使用正则化的线性回归模型预 水流量(water flowing out of dam),然后 debug 学习算法 以及 讨论偏差和方差对 该线性回归模型的影响. ①可视化数据集 本作业的数据集分成三部分: ⓐ训练集(training set),样本矩阵(训练集):X,结果标签(label of result)向量 y ⓑ交叉验证集(cross validation set),确定正则化参数 Xval 和 yval ⓒ测试集(test set)…
当我们运行一个学习算法时,如果这个算法的表现不理想,那么有两种原因导致:要么偏差比较大.要么方差比较大.换句话说,要么是欠拟合.要么是过拟合.那么这两种情况,哪个和偏差有关.哪个和方差有关,或者是不是和两个都有关,搞清楚这点很重要.能判断出现的情况是这两种中的哪一种,是一个很有效的指示器,指引着可以改进算法的最有效的方法和途径. 下面深入地探讨一下有关偏差和方差的问题,并且能弄清楚怎样评价一个学习算法.能够判断一个算法是偏差还是方差有问题.因为这个问题对于弄清如何改进学习算法的效果非常重要. 如…
1. 过拟合 欠拟合 过拟合:在训练集(training set)上表现好,但是在测试集上效果差,也就是说在已知的数据集合中非常好,但是在添加一些新的数据进来训练效果就会差很多,造成这样的原因是考虑影响因素太多,超出自变量的维度过于多了: 欠拟合:模型拟合不够,在训练集(training set)上表现效果差,没有充分的利用数据,预测的准确度低: 高阶多项式回归的过拟合与欠拟合 逻辑回归的过拟合与欠拟合 2. 偏差 方差 偏差:首先error=bias+variance:bias反映的是模型在样…
[ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这时候就没法用信息增益.信息增益率.基尼系数来判定树的节点分裂了,那么回归树采用新的方式是预测误差,常用的有均方误差.对数误差等(损失函数).而且节点不再是类别,而是数值(预测值),划分到叶子后的节点预测值有不同的计算方法,有的是节点内样本均值,有的是最优化算出来的比如Xgboost. XGBoost…
[ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,对A事件概率的一个判断.P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,对A事件概率的重新评估.P(B|A)/P(B)称为"可能性函数"(Lik…
当我们在机器学习领域进行模型训练时,出现的误差是如何分类的? 我们首先来看一下,什么叫偏差(Bias),什么叫方差(Variance): 这是一张常见的靶心图 可以看左下角的这一张图,如果我们的目标是打靶子的话,我们所有的点全都完全的偏离了这个中心的位置,那么这种情况就叫做偏差 再看右上角这张图片,我么们的目标是右上角这张图片中心的红色位置,我们射击的点都围绕在这个红色的点的周围,没有大的偏差,但是各个点间过于分散不集中,就是有非常高的方差 我们进行机器学习的过程中,大家可以想象,我们实际要训练…