题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. 题目 恰好有 \(k\) 个极大数不太好求,我们还是转化成二项式反演. 然后就变成了给定一个点的集合 \(S\),求钦定 \(S\) 中的点是极大点的方案数.可以发现 \(S\) 中的点因为必须要保证没有一维的坐标相同,所以到底是哪些点是不重要的,有用的只有 \(|S|\).所以问题转化为钦定了…
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\(p\),那么我们需要把\(x=x_0\),\(y=y_0\)与\(z=z_0\)的三个平面的交中填上比\(p\)小的数字,这样,剩下的正方体就成了一个长宽高分别为\((n-1)(m-1)(l-1)\)的子问题了. 考虑到我们使用的是数字的相对大小关系,而不是数字的值,也就是说,任意的\(k\)个数字…
题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\frac{\mathrm{cnt}[k]}{(nml)!}\). "恰好"这个词非常的难受,我们考虑容斥: 记 \(\mathrm{f}[i]\) 为存在 \(i\) 个极大的数的方案数,若恰好有 \(j\) 个极大的数,会被相应地统计 \(\displaystyle\binom{j}{i…
好神的一道计数题呀. code: #include <cstdio> #include <algorithm> #include <cstring> #define N 5000003 #define ll long long #define mod 998244353 #define setIO(s) freopen(s".in","r",stdin) using namespace std; int invg[N],dp[N]…
博客链接 里面有个下降幂应该是上升幂 还有个bk的式子省略了k^3 CODE 蛮短的 #include <bits/stdc++.h> using namespace std; const int MAXN = 5000005; const int mod = 998244353; int fac[MAXN], inv[MAXN]; inline void PreWork(int N) { fac[0] = fac[1] = inv[0] = inv[1] = 1; for(int i = 2…
题解 用容斥,算至少K个极大值的方案数 我们先钦定每一维的K个数出来,然后再算上排列顺序是 \(w_{k} = \binom{n}{k}\binom{m}{k}\binom{l}{k}(k!)^3\) 然后有\((n - k)(m - k)(l - k)\)是可以随便填的 设\(all = nml,v_k = nml - (n - k)(m - k)(l - k)\) 设剩下的数填的方案是\(h_k\) 那么答案就是\(w_kh_k \binom{all}{all - v_{k}}(all -…
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 \(N\) 种卡,第 \(i\) 种卡有一个权值 \(W_i\),小刘同学不知道 \(W_i\) 具体的值是什么.但是他通过和网友交流,他了解到 \(W_i\) 服从一个分布. - 具体地,对每个 \(i\),小刘了解到三个参数 \(p_{i,1},p_{i,2},p_{i,3}\),\(W_i\)…
「CTS2019 | CTSC2019」氪金手游 降 智 好 题 ... 考场上签到失败了,没想容斥就只打了20分暴力... 考虑一个事情,你抽中一个度为0的点,相当于把这个点删掉了(当然你也只能抽中度为0的点) 删掉就是字面意思,就是剩下的树变成子问题 考虑为什么,在抽中这个\(i\)号点后,抽中其他点的概率为 \[ \frac{W-w_i}{W}\sum_{i=0}^{\infty}(\frac{w_i}{W})^i=1 \] 说明这个点已经白给了 然后考虑这个树如果是一颗外向树,就是每个点…
题目传送门:LOJ #3120. 题意简述: 称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素). 问合法序列个数. 题解: 设颜色为 \(c\) 的珍珠的个数为 \(\mathrm{cnt}_c\),则一个方案合法当且仅当: \[\begin{aligned}\sum_{c=1}^{D}\left\lfloor\frac{\mathrm{cnt}_c}{2}\right\rfloor&\ge m\\…
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 \(n\) 个在范围 \([1, D]\) 内的整数均匀随机变量. 求至少能选出 \(m\) 个瓶子,使得存在一种方案,选择一些变量,并把选出来的每一个变量放到一个瓶子中,满足每个瓶子都恰好装两个值相同的变量的概率. 请输出概率乘上 \(D^n\) 后对 \(998244353\) 取模的值. 原题传送门. @solution@ 记 \(l = \min\{…