A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_back using namespace std; typedef long long ll; typedef unsigned long long ull; ][] = {{, }, {, }, {, -}, { -, }, {, }, {, -}, { -, -}, { -, }}; ; + + + + 1e9…
我是在在做网络流最小路径覆盖的时候找到这道题的 然后发现是个贪心+树形dp \( f[i] \)表示在\( i \)为根的子树中最少有几条链,\( v[i] \) 表示在\( i \)为根的子树中\( i \) 是( 0)否(1)为一条链的端点 然后贪心转移即可(有链端点则连起来) #include<iostream> #include<cstdio> #include<cstring> using namespace std; const int N=10005; i…
题目连接:http://codeforces.com/contest/1263/problem/F 题意:有n个设备,上和下分别连接着一颗树,上下两棵树每棵树的叶子节点连接一个设备,两棵树的根节点都是1,1是源点可以发电供给叶结点连接的设备,现在问最多删除多少条边可以保证从根结点1发电后仍然可以使得所有设备都有电? 如上图删除红色的边(5条)仍然可以保证所有设备能供电 思路: 因为是有上下两棵树,所以对于一个设备可以供电,那么删除上面的树一部分边,要么删除下面一部分边,根据题意,我们当然要删除最…
先找出强连通分量缩点,然后就是最小路径覆盖. 构造一个二分图,把每个点\(i\)拆成两个点\(X_i,Y_i\). 对于原图中的边\(u \to v\),在二分图添加一条边\(X_u \to Y_v\). 最小路径覆盖 = 顶点个数 - 最大匹配数 #include <cstdio> #include <cstring> #include <algorithm> #include <stack> using namespace std; const int…
题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径. 先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上有一个点的度数是n-1,那么必然需要走一条生成树上的边,此时答案为x+y*(n-2). 否则可以不走生成树上的边,则答案为y*(n-1). 再考虑x<y的情况,那么应该尽量走生成树上的边,由于树上没有环,于是我们每一次需要走树的一条路,然后需要从非生成树上的边跳到树的另一个点上去, 显然跳的越少越好,于…
题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如今不是DAG 可能有环 而且每一个点可能反复走 对于有环 能够缩点 缩点之后的图是DAG图 另外点能够反复走和POJ 2594一样 先预处理连通性 #include <cstdio> #include <cstring> #include <vector> #include…
UOFTCG - Office Mates no tags  Dr. Baws has an interesting problem. His N graduate students, while friendly with some select people, are generally not friendly with each other. No graduate student is willing to sit beside a person they aren't friends…
题意:给一个n个点的树,求树的最小路径覆盖.(这个最小路径覆盖不能有重点) 解法:往图论方向想很久,想得太复杂了,其实直接贪心.这个大佬题解写得很好: https://blog.csdn.net/blue_cuso4/article/details/78079730 #include <bits/stdc++.h> #define N 10005 using namespace std; ],point[N],v[N*],size[N];bool vis[N]; ; memset(point,…
//SPOJ - UOFTCG 树的最小路径覆盖 #include <bits/stdc++.h> #include <vector> using namespace std; #define ll long long ; ; ; int cnt; int head[N]; struct edge{ int to,next; }e[N<<]; void addedge(int u,int v){ e[cnt].to=v,e[cnt].next=head[u],head[…
一个点必然被路径覆盖,根据是否为路径的端点分类 \(f[x][0]\)表示以\(x\)为根的子树,\(x\)不为端点的最小路径覆盖数 \(f[x][1]\)表示以\(x\)为根的子树,\(x\)为一条路径端点的最小路径覆盖数 设当前做到了子树\(v\) \[ \begin{align*} f[x][0]&=\min\{f[x][0]+f[v][0],f[x][1]+f[v][1]\}\\ f[x][1]&=\min\{f[x][1]+f[v][0],cnt+f[v][1]\} \end{a…