这题其实挺水的,但我比较vegetable,交了好多次才过. 题意: 给定一个序列,把这个序列的所有连续子序列分组,每组中任意两个数相乘是个完全平方数,输出每个子序列最少分的组数: 思路: 先把每个数都除去自身的完全平方因子,为什么呢?这样处理了之后,只有相同的数相乘才能变成完全平方数,而且原来相乘能变成完全平方数的数对也不会有影响,举个例子:$ 1 \times 4 = 4 $,$4$是完全平方数,除去平方因子后,变成 $1 \times 1 = 1$,$1$还是完全平方数(感性地理解YY一下…