Softmax函数与交叉熵】的更多相关文章

在Logistic regression二分类问题中,我们可以使用sigmoid函数将输入Wx+b映射到(0,1)区间中,从而得到属于某个类别的概率.将这个问题进行泛化,推广到多分类问题中,我们可以使用softmax函数,对输出的值归一化为概率值 这里假设在进入softmax函数之前,已经有模型输出C值,其中C是要预测的类别数,模型可以是全连接网络的输出aa,其输出个数为C,即输出为: 所以对每个样本,它属于类别i的概率为: 通过上式可以保证 ,即属于各个类别的概率和为1 对softmax函数进…
一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. 上左图中,箭头的长度表示陡峭度,越陡峭的地方箭头越长,箭头指向的方向是y变大的方向,如果要使用梯度下降,则需要取负方向. 右图中,蓝色代表低点,红色代表高点,中间的箭头方向从蓝色指向红色,而且中间最陡峭的地方,箭头最长. 二.梯度下降 上图中分别使用梯度下降优化θ1和θ2的值,α表示学习率,即每次按…
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(BlogID=106) 环境说明 Windows 10 VSCode Python 3.8.10 Pytorch 1.8.1 Cuda 10.2 前言   在<DL基础补全计划(一)---线性回归及示例(Pytorch,平方损失)>(https://blog.csdn.net/u011728480/a…
深度学习分类问题结尾就是softmax,损失函数是交叉熵,本质就是极大似然...…
二分~多分~Softmax~理预 一.简介 在二分类问题中,你可以根据神经网络节点的输出,通过一个激活函数如Sigmoid,将其转换为属于某一类的概率,为了给出具体的分类结果,你可以取0.5作为阈值,凡是大于0.5的样本被认为是正类,小于0.5则认为是负类 然而这样的做法并不容易推广到多分类问题.多分类问题神经网络最常用的方法是根据类别个数n,设置n个输出节点,这样每个样本,神经网络都会给出一个n维数组作为输出结果,然后我们运用激活函数如softmax,将输出转换为一种概率分布 其中的每一个概率…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线).               其中z是一个线性组合,比如z可以等于:b + w1*x1 + w2*x2.通过代入很大的正数或很小的负数到g(z)函数中可知,其结果趋近于0或1 A logistic function or logistic curve is a common “S” shape (sigmoid curve). 也就是…
神经网络由各个部分组成 1.得分函数:在进行输出时,对于每一个类别都会输入一个得分值,使用这些得分值可以用来构造出每一个类别的概率值,也可以使用softmax构造类别的概率值,从而构造出loss值, 得分函数表示最后一层的输出结果,得分函数的维度对应着样本的个数和标签的类别数 得分结果的实例说明:一个输入样本的特征值Xi 1*4, w表示权重参数3*4,这里使用的是全连接y = w * x.T,输出结果为3*1, 这3个结果分别表示3种标签的得分值 代码说明: out = np.dot(x_ro…
分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交叉熵,脑子里就会出现这个东西: 随后我们脑子里可能还会出现Sigmoid()这个函数: pytorch中的CrossEntropyLoss()函数实际就是先把输出结果进行sigmoid,随后再放到传统的交叉熵函数中,就会得到结果. 那我们就先从sigmoid开始说起,我们知道sigmoid的作用其实…
交叉熵代价函数 machine learning算法中用得很多的交叉熵代价函数. 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为: 其中y是我们期望的输出,a为神经元的实际输出[ a=σ(z), where z=wx+b ]. 在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数: 然后更新w.b: w <—— w - η* ∂C/∂w = w - η *…