上次读到深度可分卷积还是去年暑假,各种细节都有些忘了.记录一下,特别是计算量的分析过程. 1. 标准卷积和深度可分卷积 标准卷积(MobileNet论文中称为Standard Convolution,如下图所示)将N个大小(边长)为\(D_{k}\).通道数为M的卷积核作用于大小为\(D_{f}\).通道数同为M的特征图上,最后得到大小为Dp.通道数为N的输出.即标准卷积的每个卷积和的通道数需要与输入特征图的通道数相同,且输出特征图的通道数等于卷积核的个数.(以上均为保证文章完整性的废话) 深度…
https://zhuanlan.zhihu.com/p/28186857 这个例子说明了什么叫做空间可分离卷积,这种方法并不应用在深度学习中,只是用来帮你理解这种结构. 在神经网络中,我们通常会使用深度可分离卷积结构(depthwise separable convolution). 这种方法在保持通道分离的前提下,接上一个深度卷积结构,即可实现空间卷积.接下来通过一个例子让大家更好地理解. 假设有一个3×3大小的卷积层,其输入通道为16.输出通道为32.具体为,32个3×3大小的卷积核会遍历…
按照普通卷积-深度卷积-深度可分离卷积的思路总结. depthwise_conv2d来源于深度可分离卷积,如下论文: Xception: Deep Learning with Depthwise Separable Convolutions 函数定义如下: tf.nn.depthwise_conv2d(input,filter,strides,padding,rate=None,name=None,data_format=None) 除去name参数用以指定该操作的name,data_forma…
目录: 1.什么是depthwise separable convolution? 2.分析计算量.flops 3.参数量 4.与传统卷积比较 5.reference…
任何看过MobileNet架构的人都会遇到可分离卷积(separable convolutions)这个概念.但什么是“可分离卷积”,它与标准的卷积又有什么区别?可分离卷积主要有两种类型: 空间可分离卷积(spatial separable convolutions) 深度可分离卷积(depthwise separable convolutions) 空间可分离卷积 从概念上讲,这是两者中较容易的一个,并说明了将一个卷积分成两部分(两个卷积核)的想法,所以我将从这开始. 不幸的是,空间可分离卷积…
论文原址:MobileNets v1 TensorFlow实现:mobilenet_v1.py TensorFlow预训练模型:mobilenet_v1.md 一.深度可分离卷积 标准的卷积过程可以看上图,一个2×2的卷积核在卷积时,对应图像区域中的所有通道均被同时考虑,问题在于,为什么一定要同时考虑图像区域和通道?我们为什么不能把通道和空间区域分开考虑? 深度可分离卷积提出了一种新的思路:对于不同的输入channel采取不同的卷积核进行卷积,它将普通的卷积操作分解为两个过程. 卷积过程 假设有…
目录 故事 Inception结构和思想 更进一步,以及现有的深度可分离卷积 Xception结构 实验 这篇论文写得很好.只要你知道卷积操作或公式,哪怕没看过Inception,也能看懂. 核心贡献:从Inception的思想:剥离时序卷积和空域卷积 得到启发,提出了Xception(Extreme Inception),希望能彻底解耦二者. 其他贡献: 本文提供了关于Inception的一种解释. 讨论了与现有深度可分离卷积的区别,并指出其最大影响因素是两层卷积之间的非线性化. 在两个图像分…
CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向. 注:水平所限,下面的见解或许有偏差,望大牛指正.另外只介绍其中具有代表性的模型,一些著名的模型由于原理相同将不作介绍,若有遗漏也欢迎指出. 一.卷积只能在同一组进行吗?-- Group convolution Group convolution 分组卷积,最早在AlexN…
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源代码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度.基础方面的非常多,随便看看就能够,仅仅是非常多没有把细节说得清楚和明确: 能把细…