彻底解密 Spark 的 HashShuffle】的更多相关文章

本課主題 Shuffle 是分布式系统的天敌 Spark HashShuffle介绍 Spark Consolidated HashShuffle介绍 Shuffle 是如何成为 Spark 性能杀手 Shuffle 性能调优思考 Spark HashShuffle 源码鉴赏 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-Based Shuffle,那为什么要讲 HashShuffle 呢,因为有分布式就一定会有 Shuffle,而且 HashSh…
本课主题 Shuffle 是分布式系统的天敌 Spark HashShuffle介绍 Spark Consolidated HashShuffle介绍 Shuffle 是如何成为 Spark 性能杀手 Shuffle 性能调优思考 Spark HashShuffle 源码鉴赏 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-Based Shuffle,那为什么要讲 HashShuffle 呢,因为有分布式就一定会有 Shuffle,而且 HashSh…
装载:http://www.cnblogs.com/jcchoiling/p/6431969.html 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-Based Shuffle,那为什么要讲 HashShuffle 呢,因为有分布式就一定会有 Shuffle,而且 HashShuffle 是 Spark以前的版本,亦即是 Sort-Based Shuffle 的前身,因为有 HashShuffle 的不足,才会有后续的 Sorted-Based S…
在spark1.2以上的版本中,默认shuffle的方式已经变成了sortshuffle(在spark.shuffle.manager修改org.apache.spark.shuffle.sort.HashShuffleManager或者org.apache.spark.shuffle.sort.SortShuffleManager进行切换). hashshuffle会在map根据reduce来生成文件. 也就是说如果reduce有10个,那么一个map就会生成一个文件,来表明被不同的reduc…
Spark 内核 第28课:Spark天堂之门解密 (点击进入博客)从 SparkContext 创建3大核心对象开始到注册给 Master 这个过程中的源码鉴赏 第29课:Master HA彻底解密 (点击进入博客)从 Master 如何基于 ZooKeeper 来做 HA 的源码鉴赏 第30课:Master的注册机制和状态管理解密 (点击进入博客)从 Master 的角度去分析它是如何接收 Worker, Driver, Application 的注册,以及它是如何管理 Driver 和 E…
Spark性能优化指南——基础篇 https://tech.meituan.com/spark-tuning-basic.html Spark性能优化指南——高级篇 https://tech.meituan.com/spark-tuning-pro.html [Spark性能调优] 第二章:彻底解密Spark的HashShuffle http://www.cnblogs.com/jcchoiling/p/6431969.html [Spark性能调优] 第三章 : Spark 2.1.0 中 S…
Hadoop Shuffer Hadoop 的shuffer主要分为两个阶段:Map.Reduce. Map-Shuffer: 这个阶段发生在map阶段之后,数据写入内存之前,在数据写入内存的过程就已经开始shuffer,通过设置mapreduce.task.io.sort.mb的参数,可改变内存的大小,默认为100M.数据在写入内存大于80%时,会发生溢写spill)过程,将数据整体落地到磁盘,这个过程中默认调用快速排序算法进行排序,否则调用用户自定义的 combiner()方法,将数据按照排…
本课主题 Master HA 解析 Master HA 解析源码分享 [引言部份:你希望读者看完这篇博客后有那些启发.学到什么样的知识点] 更新中...... Master HA 解析 生产环境下一般采用 ZooKeeper 做 HA,且建义为 3台 Master, ZooKeeper 会自动管理 Master 的切换 采用 ZooKeeper 做 HA 的时候,ZooKeeper 会负责保存整个 Spark 集群运行的元数据:所有 Worker 的信息, 所有 Driver 的信息, 应用程序…
本課主題 Master 接收 Worker, Driver, Application Master 处理 Driver 狀态变换 Master 处理 Executor 狀态变换 [引言部份:你希望读者看完这篇博客后有那些启发.学到什么样的知识点] 更新中...... Master 接受 Driver, Worker, Application 注册內幕 可以把 Master 想像成公司里的总经理,Driver 就是客户,Worker 是每个项目的技术领导,Executor 是实际干活的工程师,在实…
本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这也是关系到整个作业有集群中该怎么运行:其次就是数据本地性,Spark 一舨的代码都是链式表达的,这就让一个任务什么时候划分成 Stage,在大数据世界要追求最大化的数据本地性,所有最大化的数据本地性就是在数据计算的时候,数据就在内存中.最后就是 Spark 的实现算法时候的略的怎么样.希望这篇文章能…