hive两大表关联优化试验】的更多相关文章

呼叫结果(call_result)与销售历史(sale_history)的join优化: CALL_RESULT: 32亿条/444G SALE_HISTORY:17亿条/439G 原逻辑 Map: 3255 Reduce: 950 Cumulative CPU: 238867.84 sec HDFS Read: 587550313339 HDFS Write: 725372805057 SUCCESS 28.1MIN 开启中间结果压缩 set hive.exec.compress.interm…
Hive中小表与大表关联(join)的性能分析 [转自:http://blog.sina.com.cn/s/blog_6ff05a2c01016j7n.html] 经常看到一些Hive优化的建议中说当小表与大表做关联时,把小表写在前面,这样可以使Hive的关联速度更快,提到的原因都是说因为小表可以先放到内存中,然后大表的每条记录再去内存中检测,最终完成关联查询.这样的原因看似合理,但是仔细推敲,又站不住脚跟. 多小的表算小表?如果所谓的小表在内存中放不下怎么办?我用2个只有几条记录的表做关联查询…
记得5年前遇到一个SQL.就是一个简单的两表关联.SQL跑了几乎相同一天一夜,这两个表都非常巨大.每一个表都有几十个G.数据量每一个表有20多亿,表的字段也特别多. 相信大家也知道SQL慢在哪里了,单个进程的PGA 是绝对放不下几十个G的数据,这就会导致消耗大量temp tablespace,SQL慢就是慢在temp来回来回来回...的读写数据. 遇到这样的超级大表与超级大表怎么优化呢?这篇文章将告诉你答案. 首先创建2个測试表 t1,t2 数据来自dba_objects create tabl…
Oracle两张表关联批量更新其中一张表的数据 方法一(推荐): UPDATE 表2 SET 表2.C = (SELECT B FROM 表1 WHERE 表1.A = 表2.A) WHERE EXISTS ( FROM 表1 WHERE 表1.A = 表2.A); 尤其注意最后的外层where条件尤为重要,是锁定其批量更新数据的范围. 方法二: MERGE INTO 表2 USING 表1 ON (表2.A = 表1.A) -- 条件是 A 相同 WHEN MATCHED THEN UPDAT…
-- 方法1:游标-- 声明变量DECLARE @SystemUserId AS UNIQUEIDENTIFIER -- 声明游标DECLARE C_SystemUser CURSOR FAST_FORWARD FOR SELECT SystemUserId FROM Quotation.dbo.SystemUser WHERE SystemUserNo NOT IN ('beijing','dicai','admin','test') ; OPEN C_SystemUser; -- 取第一条记…
cmds系统数据库源端大表数据更新优化 以下脚本可以用于将表按照rowid范围分区,获得指定数目的rowid Extent区间(Group sets of rows in the table into smaller chunks), 以便于非分区表利用rowid来实现并行删除或更新 ``` REM  rowid_ranges should be at least 21 REM  utilize this script help delete large table REM  if update…
Mongoose 两个表关联查询aggregate 通常两个表关联查询的时候,是一种一对多的关系,比如订单与订单详情就是一对多的关系,一个订单下面有多个商品 数据模拟 首先我们先将数据模拟出来,先选择数据库 use eggcms db.order.insert({"order_id":"1","uid":10,"trade_no":"111","all_price":100,"…
需求: 小表数据量20w条左右,大表数据量在4kw条左右,需要根据大表筛选出150w条左右的数据并关联更新小表中5k左右的数据. 性能问题: 对筛选条件中涉及的字段加index后,如下常规的update语句仍耗时半小时左右. UPDATE WMOCDCREPORT.DM_WM_TRADINGALL A SET ( A.RELATIONSHIPNO, A.PACKAGE ) = (SELECT B.RELATIONSHIPNO, CASE ' ' ' ') THEN 'BC' ') THEN 'P…
一个简单的两表关联,SQL跑了差不多一天一夜,这两个表都非常巨大,每个表都有几十个G,数据量每个表有20多亿,表的字段也特别多. 相信大家也知道SQL慢在哪里了,单个进程的PGA 是绝对放不下几十个G的数据,这就会导致消耗大量temp tablespace,SQL慢就是慢在temp来回来回来回...的读写数据. 先创建2个测试表 t1,t2 数据来自dba_objects create table t1 as select * from dba_objects; create table t2…
分区是在处理大型事实表时常用的方法.分区的好处在于缩小查询扫描范围,从而提高速度.分区分为两种:静态分区static partition和动态分区dynamic partition.静态分区和动态分区的区别在于导入数据时,是手动输入分区名称,还是通过数据来判断数据分区.对于大数据批量导入来说,显然采用动态分区更为简单方便. - 对现存hive表的分区 首先,新建一张我们需要的分区以后的表create table like 'origin' 若现存hive表中没有分区信息,我们需要手动修改hive…