时间复杂度为 n*logn的LIS算法是用一个stack维护一个最长递增子序列 如果存在 x < y 且  a[x] > a[y],那么我们可以用a[y]去替换a[x] 因为a[y]比较小,具有更大的潜力,使得后面的元素和它成为更长的递增序列 如例子: a[] = {1,4,8,3,6}; 我们用一个stack st保存当前的最长递增子序列,top = 0; 很明显,初始化时st[top] = 1; 之后随着i循环变量的递增,如果 a[i] > st[top] , 那么 st[++top…
时间复杂度为O(logN)的常用算法 折半查找 /* * 折半查找 * 默认查找的数组已经排过序 */ public static int binarySearch(int[] a,int x){ int low=0,high=a.length-1; while(low<=high){ int mid =(low+high)/2; if(a[mid]<x){ low=mid+1; }else if(a[mid]>x){ high=mid-1; }else{ return mid; } }…
Python之路,Day21 - 常用算法学习   本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 一…
目录: 一:大O记法 二:各函数高阶比较 三:常用算法和数据结构的复杂度速查表 四:常见的logn是怎么来的 一:大O记法 算法复杂度记法有很多种,其中最常用的就是Big O notation(大O记法): 对于其中的g(x)是关于操作元素数x为自变量的计算次数函数,而x趋近无穷大从而只留下最高项且忽略其常数项是为了集中看函数随着元素个数的大量增加后运行时间的增加速度从而用来衡量时间复杂度. e.g: for i in range(x): print(‘aha’) print(i) print(…
选择排序 时间复杂度 二.计算方法 1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了.并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多. 一个算法中的语句执行次数称为语句频度或时间频度.记为T(n). 2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f…
一,算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 一个算法应该具有以下七个重要的特征: ①有穷性(Finiteness):算法的有穷性是指算法必须能在执行有限个步…
本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 一个算法应该具有以下七个重要的特征: ①有穷性(Fin…
本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 一个算法应该具有以下七个重要的特征: ①有穷性(Fin…
1,什么是算法的时间和空间复杂度 算法(Algorithm)是指用来操作数据,解决程序问题的一组方法,对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但是在过程中消耗的资源和时间却会有很大的区别. 那么我们应该如何去衡量不同算法之间的优劣呢? 主要还是从算法所占用的时间和空间两个维度取考量. 时间维度:是指执行当前算法所消耗的时间,我们通常使用时间复杂度来描述. 空间维度:是指执行当前算法需要占用多少内存空间,我们通常用空间复杂度来描述 因此,评价一个算法的效率主要是看它的时间复杂度…
根据离散离散概率分布抽样是一个常见的问题.这篇文章将介绍运行时间复杂度为O(1)的 alias method 抽样算法思想. 下面举例说明: 比如 a,b,c,d 的概率分别为 0.1,0.2,0.3,0.4.如何编程实现按概率抽样呢? 最简单的方法是生成一个数组:1,2,2,3,3,3,4,4,4,4.然后随机生成一个不大于4的数.这种方法简单易实现,但当随机变量很多时,占用的空间就太大了. 再进一步,可以根据它们的概率密度分布(PDF)生成累积分布(CDF):0.1,0.3,0.6,1.然后…