pytorch 损失函数】的更多相关文章

pytorch损失函数: http://blog.csdn.net/zhangxb35/article/details/72464152?utm_source=itdadao&utm_medium=referral…
一.BCELoss 二分类损失函数 输入维度为(n, ), 输出维度为(n, ) 如果说要预测二分类值为1的概率,则建议用该函数! 输入比如是3维,则每一个应该是在0--1区间内(随意通常配合sigmoid函数使用),举例如下: import torchimport torch.nn as nnm = nn.Sigmoid() loss = nn.BCELoss() input = torch.randn(3,requires_grad=True) target = torch.empty(3)…
参考:https://pytorch.org/tutorials/advanced/neural_style_tutorial.html 具体的理论就不解释了,这里主要是解释代码: ⚠️使用的是python2.7 1.导入包和选择设备 下面是需要用来实现神经迁移的包列表: torch, torch.nn, numpy (使用pytorch实现神经网络必不可少的包) torch.optim (有效梯度下降) PIL, PIL.Image, matplotlib.pyplot (下载和显示图像) t…
深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [1]---监督学习和无监督学习"中我们介绍了监督学习和无监督学习相关概念.本文主要介绍神经网络常用的损失函数. 以下均为个人学习笔记,若有错误望指出. 神经网络常用的损失函数 pytorch损失函数封装在torch.nn中. 损失函数反映了模型预测输出与真实值的区别,模型训练的过程即让损失函数不断减小,最终得到可以拟合预测训练样…
[翻到文末, 还能让你看尽CV和NLP完整技术路径以及前沿+经典论文篇目,助你构建深度学习知识框架] 今年8月!PyTorch 1.2.0 版本来啦!! 据我们了解,在学术领域,特别是CV/NLP方向,有90%的人都在使用PyTorch,最新PyTorch 1.2.0版本的发布,使每项工具都进行了新的优化与改进,兼容性更强,使用起来也更加便捷! 通过使用 PyTorch 1.2.0 开源 ML 框架在生产应用方面向前迈出了一大步,并增加了一个改进的.更加完善的 TorchScript 环境.这些…
本文截取自<PyTorch 模型训练实用教程>,获取全文pdf请点击: tensor-yu/PyTorch_Tutorial​github.com 版权声明:本文为博主原创文章,转载请附上博文链接! 我们所说的优化,即优化网络权值使得损失函数值变小.但是,损失函数值变小是否能代表模型的分类/回归精度变高呢?那么多种损失函数,应该如何选择呢?请来了解PyTorch中给出的十七种损失函数吧. 1.L1loss 2.MSELoss 3.CrossEntropyLoss 4.NLLLoss 5.Poi…
基本用法 12 criterion = LossCriterion() loss = criterion(x, y) # 调用标准时也有参数 损失函数 L1范数损失:L1Loss 计算 output 和 target 之差的绝对值. 1 torch.nn.L1Loss(reduction='mean') 参数:reduction-三个值,none: 不使用约简:mean:返回loss和的平均值:sum:返回loss的和.默认:mean. 均方误差损失:MSELoss 计算 output 和 ta…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/loss_function_1.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/loss_function_1.py 这篇文章主要介绍了损失函数的概念,以及 PyTorch 中提供的常用损失函数. 损失函数 损失函数是衡量模型输出与真实标签之间的差异.我们还经常…
MSELoss损失函数中文名字就是:均方损失函数,公式如下所示: 这里 loss, x, y 的维度是一样的,可以是向量或者矩阵,i 是下标. 很多的 loss 函数都有 size_average 和 reduce 两个布尔类型的参数.因为一般损失函数都是直接计算 batch 的数据,因此返回的 loss 结果都是维度为 (batch_size, ) 的向量. 一般的使用格式如下所示: loss_fn = torch.nn.MSELoss(reduce=True, size_average=Tr…
损失函数的基本用法: criterion = LossCriterion() #构造函数有自己的参数 loss = criterion(x, y) #调用标准时也有参数 得到的loss结果已经对mini-batch数量取了平均值 1.BCELoss(二分类) CLASS torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean') 创建一个衡量目标和输出之间二进制交叉熵的criterion unre…