BZOJ3932: [CQOI2015]任务查询系统】的更多相关文章

BZOJ3932 CQOI2015 任务查询系统 Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第Ei秒后结束(第Si秒和Ei秒任务也在运行),其优先级为Pi.同一时间可能有多个任务同时执行,它们的优先级可能相同,也可能不同.调度系统会经常向查询系统询问,第Xi秒正在运行的任务中,优先级最小的Ki个任务(即将任务按照优先级从小到大排序后…
3932: [CQOI2015]任务查询系统 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4869  Solved: 1652[Submit][Status][Discuss] Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第Ei秒后结束(第Si秒和Ei秒任务也在运行 ),其优先级为…
任务查询系统 bzoj-3932 CQOI-2015 题目大意:最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第Ei秒后结束(第Si秒和Ei秒任务也在运行),其优先级为Pi.同一时间可能有多个任务同时执行,它们的优先级可能相同,也可能不同.调度系统会经常向查询系统询问,第Xi秒正在运行的任务中,优先级最小的Ki个任务(即将任务按照优先级从小到大排序后取前Ki个…
Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第Ei秒后结束(第Si秒和Ei秒任务也在运行 ),其优先级为Pi.同一时间可能有多个任务同时执行,它们的优先级可能相同,也可能不同.调度系统会经常向 查询系统询问,第Xi秒正在运行的任务中,优先级最小的Ki个任务(即将任务按照优先级从小到大排序后取前Ki个 )的优先级之和是多少.特别的,如…
题目描述 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第Ei秒后结束(第Si秒和Ei秒任务也在运行 ),其优先级为Pi.同一时间可能有多个任务同时执行,它们的优先级可能相同,也可能不同.调度系统会经常向 查询系统询问,第Xi秒正在运行的任务中,优先级最小的Ki个任务(即将任务按照优先级从小到大排序后取前Ki个 )的优先级之和是多少.特别的,如果Ki大于第X…
传送门 真不知道我没学主席树之前是有什么勇气说自己高级数据结构以及学的七七八八了. 这道题应该也是算是主席树的经典运用. 刚开始脑抽了,想把(S,E,P)的处理直接在线用树状数组xjb搞搞算了.写完后才意识到树状数组无法(很难?)实现区间修改. 然后想了想既然这个是一下子把所有修改都放上了直接用树状数组差分一下不就好了! 然后又深感自己制杖,为什么要用树状数组差分呢,直接开几个vector维护一下就行了. 说是修改,本质上是不带修改的主席树,很快搞完.WA,眼查,无果,跟踪,无果. 拍了几组小数…
传送门-> 离线操作听上去很简单,遗憾的是它强制在线. 每个时刻可以看成可持久化线段树中的一个版本,而每一个版本的线段树维护的是值某一段区间且在这个版本对应的时刻出现的数之和. 会发现同一时刻可能会有很多个数插入,这时可以对每个点记录版本,版本相同就不用更新了. 注意空间问题,并不对劲的空间让并不对劲的人调了一年. #include<algorithm> #include<cmath> #include<cstdio> #include<cstdlib>…
传送门 看到这个题有个很暴力的想法, 可以每一个时间点都建一颗主席树,主席树上叶子节点 i 表示优先级为 i 的任务有多少个. 当 x 到 y 有个优先级为 k 的任务时,循环 x 到 y 的每个点,都插入一个 k. 当然这样肯定完蛋. x 到 y 插入一个优先级为 k 的任务? 想到差分,给时间点为 x 的主席树插入 k,给时间点为 y + 1 的主席树插入 -k. 那么求一个树状数组的前缀和就好了. 前缀和? 用树状数组优化. 这样就可以用 树状数组 套 主席树 来做. ——代码 #incl…
题面 分析 对于一个区间修改(s,e,v),我们可以将它差分,这样就变成了单点修改s和e+1(s插入,t+1删除) 我们用主席树维护差分数组的前缀和,第i棵主席树维护区间[1,i]之间的所有差分值 那么查询我们直接在第i棵主席树里查第k大即可 注意: 1.主席树里面要维护两个值,一个是值落在区间[l,r]内的树的个数cnt,一个是这cnt个数的和 2.注意有多个数相同的情况,查询到叶子节点[l,l]之后,不能直接返回sum,而是应该返回k*b[l],其中b[l]是l离散化之前的值 这里有一组ha…
记录下自己写错的地方吧 1. 区间可能有重复 2. 没有出现的坐标也要计入version (因为询问里可能会有) #include <bits/stdc++.h> using namespace std; ],_e[],_p[],ind,ch[][]; ],root[],rcnt,ver[],maxn,_list[],flag; ]; struct Item { int pos,typ,key; void init(int a,int b,int c) { pos=a; typ=b; key=…