P NP NPC】的更多相关文章

from http://blog.csdn.net/huang1024rui/article/details/49154507 P.NP.NPC和NP-Hard相关概念的图形和解释 一.相关概念 P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题 NPC: NP完全问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都得到解决. NP hard:NP难问题…
P问题:多项式时间内可以找到解的问题,这个解可以在多项式时间内验证. NP问题:有多项式时间内可以验证的解的问题,而并不能保证可以在多项式时间内找到这个解. 比如汉密尔顿回路,如果找到,在多项式时间内很容易验证这个解,但并不能保证在多项式时间内一定 可以找到这个解.如果运气好,可能找到,运气不好,可能找不到.也就是非确定性图灵机可以在多项式时间内解决. NP不是P的否定.而是P的外延,也就是超集. NP中的N是non-determinitive的意思,也就是非确定性,而不是单纯的非. 我们常说的…
P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题 NPC: NP完全问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都得到解决. NP hard:NP难问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的问题(不一定是NP问题). 可以参考:https://www.zybuluo.com/chanvee/note/12722…
本文转自豆瓣_燃烧的影子 图灵机与可计算性 图灵(1912~1954)出生于英国伦敦,19岁进入剑桥皇家学院研究量子力学和数理逻辑.1935年,图灵写出了"论高斯误差函数"的论文,因此他从一名学生直接成为学院的研究员,并开始了"可计算性"研究.1936年4月,图灵发表了"可计算数及其在判定问题上的一个应用"的论文,形成了"图灵机"的重要思想.用反证法证明,任何可计算其值的函数都存在相应的图灵机:反之,不存在相应图灵机的函数就是…
这或许是众多OIer最大的误区之一.    你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问题 了”之类的话.你要知道,大多数人此时所说的NP问题其实都是指的NPC问题.他们没有搞清楚NP问题和NPC问题的概念.NP问题并不是那种“只有搜才 行”的问题,NPC问题才是.好,行了,基本上这个误解已经被澄清了.下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很 感兴趣就可以不看了.接下来你可以看到,把NP问题当成是 NPC问题是一个…
参考<算法设计技巧与分析>--沙特 问题可以分为判定类问题和最优化问题,判定类问题可以转化为最优化问题,所以下面讨论的是判定类的问题. P类问题是可以在多项式时间  采用确定性算法给出解 NP类问题是可以在多项式时间验证解的正确性的问题 NPhard 问题是:所有NP类问题可规约为该问题,则该问题为NPhard 问题 NPComplete问题要求同上,但要求该问题属于NP问题 NPco问题是补属于NP问题的问题 NPI问题是NP类问题中不包含于P类问题和NPC问题 的问题 (P属于NPI)…
study from : http://www.matrix67.com/blog/archives/105…
看师兄们的论文经常说一句这是个NP难问题,所以采用另外一种方法来代替(比如凸松弛,把l0范数的问题松弛为l1范数的问题来求解).然后搜索了相关知识,也还是没看太懂,把一些理论知识先贴上来,希望以后再接触到会有更好的理解. 参考来源:http://blog.csdn.net/jbb0523/article/details/40710449 >简要介绍(简单介绍了相关概念和从属关系,若时间不紧可详细看下文中的相关解释) 一.相关概念 P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决或…
P.NP.NPC和NP-Hard相关概念的图形和解释 http://blog.csdn.net/huang1024rui/article/details/49154507 一.相关概念 P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题 NPC: NP完全问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都得到解决. NP hard:NP难问题,所有NP…
Polynomial Nondeterministic Polynomial P问题: 一个问题可以在多项式时间复杂度内解决 NP问题: 一个问题可以在多项式时间内证实或者证伪 NP-Hard问题: 对于NP问题在多项式时间内转化为S问题,解决S就可以解决NP,认为S比NP难 转化的过程称为归约,NP---归约--->NP-Hard NP-Complete问题:    若NP-Hard问题本身也是NP问题,称此问题为NPC问题 P=NP的情况下 P=NP=NPC<NP-Hard p≠NP的情况…