RBM如何训练?】的更多相关文章

RBM(Restricted Boltzman Machine,受限玻尔兹曼机)是深度学习的基础,虽然原理比较简单,但实际训练中用到了很多trick,在参考文献中,Hinton为我们披露了几个训练的细节. 第一,输入为实值向量: 当RBM的输入v是实值向量时,计算隐含层输出h的公式与二值向量是一致的,即 p(h=1|v) = sigm(b+v*w) ,注意,这个公式给出的是h=1的概率,我们真正得到的隐含层输出并不是这个概率,而是二值向量h本身,所以需要对这个概率做二值化处理,h = p(h=1…
2006 年,Hinton 等人基于受限波尔兹曼机(Re- stricted Boltzmann Machines, RBMs)提出的深度信念 网络(Deep Belief Networks, DBNs)是深度学习理论在 机器学习领域打响的第一枪,并成为了其后至今深度学 习算法的主要框架.在该算法中,DBN 由若干层 RBM 级联而成,得益于对比散度(Contrastive Divergence, CD)的高效近似算法,DBN 绕过了多隐层神经网络整 体训练的难题,将其简化为多个 RBM 的训练…
这篇写的主要是翻译网上一篇关于受限玻尔兹曼机的tutorial,看了那篇博文之后感觉算法方面讲的很清楚,自己收获很大,这里写下来作为学习之用. 原文网址为:http://imonad.com/rbm/restricted-boltzmann-machine/ 翻译如下: (注:下文中的"我"均指原作者) 受限玻尔兹曼机--简单的教程 我读过很多关于RBM的论文,但是要理解它所有的实现细节似乎有些难度. 因此我想和大家分享一些我在面对这些困难时收获的经验.我的教程是基于RBM的一个变种,…
深度学习读书笔记之RBM 声明: 1)看到其他博客如@zouxy09都有个声明,老衲也抄袭一下这个东西 2)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 3)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的.如果某部分不小心侵犯了大家的利益,还望海涵,并联系老衲删除或修改,直到相关人士满意为止. 4)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢.…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 接下来重点讲一下RBM模型求解方法,其实用的依然是梯度优化方法,但是求解需要用到随机采样的方法,常见的有:Gibbs Sampling和对比散度(contrastive divergence, CD[8])算法. RBM目标函数 假设给定的训练集合是S={vi},总数是ns,其中每个样本表示为vi=(vi1,vi2,-,vinv…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上解上一篇RBM(一)基本概念,本篇记叙一下RBM的模型结构,以及RBM的目标函数(能量函数),通过这篇就可以了解RBM到底是要求解什么问题.在下一篇(三)中将具体描述RBM的训练/求解方法,包括Gibbs sampling和对比散度DC方法. RBM模型结构 因为RBM隐层和可见层是全连接的,为了描述清楚与容易理解,把每一层的神…
目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Networks,简称ANN)貌似更为合理.神经网络最早是人工智能领域的一种算法或者说是模型,目前神经网络已经发展成为一类多学科交叉的…
Atitit 语音识别的技术原理 1.1. 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),2 1.2. 模型目前,主流的大词汇量语音识别系统多采用统计模式识别技术2 1.3. 基本方法般来说,语音识别的方法有三种:基于声道模型和语音知识的方法.模板匹配的方法以及利用人工神经网络的方法.2 1.3.1. 模板匹配的方法2 1.4. 一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法.模板匹配的方法以及利用人工神经网络的方法.2 1…
头脑一热,坐几十个小时的硬座北上去天津大学去听了门4天的深度学习课程,课程预先的计划内容见:http://cs.tju.edu.cn/web/courseIntro.html.上课老师为微软研究院的大牛——邓力,群(qq群介绍见:Deep learning高质量交流群)里面有人戏称邓力(拼音简称DL)老师是天生注定能够在DL(Deep learning)领域有所成就的,它的个人主页见:http://research.microsoft.com/en-us/people/deng/.这次我花费这么…
Hinton第15课,本节有课外读物<Semantic Hashing>和<Using Very Deep Autoencoders for Content-Based Image Retrieval>这两篇论文 一.从PCA到AE 这部分中,首先介绍下PCA,这个方法被广泛的应用在信号处理上.PCA的idea就是高维数据可以用更低维度的编码来表示,当数据位于高维空间中的线性流形(linear manifold)附近时就会发生这种情况.所以如果我们可以找到这个线性流形,我们就能将数…
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE >的论文,也是这篇论文揭开了深度学习的序幕. 笔记 摘要:高维数据可以通过一个多层神经网络把它编码成一个低维数据,从而重建这个高维数据,其中这个神经网络的中间层神经元数是较少的,可把这个神经网络叫做自动编码网络或自编码器(autoencoder).梯度下降法可用来微调这个自动编码器的权值,但是只有在初始化权值…
上一篇文章提到了数据挖掘.机器学习.深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html 深度学习具体的内容可以看这里: 参考了这篇文章:https://zhuanlan.zhihu.com/p/20582907?refer=wangchuan  <王川: 深度学习有多深, 学了究竟有几分? (一)> 笔记:神经网络的研究,因为人工智能的一位大牛Marvin Minsky的不看好,并且出书说明其局限性,而出现二十年的长期低潮.   在…
1.RBM简介 受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)最早由hinton提出,是一种无监督学习方法,即对于给定数据,找到最大程度拟合这组数据的参数.RBM常用于降维,分类,回归与协同过滤,特征学习甚至 topic model ,其网络结构如下: RBM是一种两层的贝叶斯网络,是Deep Blief Network 的基本组成成分,该网络可网络结构有 n个可视节点和m个隐藏节点 ,其中每个可视节点只与m个隐藏节点相关,与其他可视节点独立,对于隐藏节点同…
本文笔记旨在概括地讲deep learning的经典应用.内容太大,分三块. --------------------------------------------------------------------------------------------- Content 1. 回想 deep learning在图像上的经典应用 1.1 Autoencoder 1.2 MLP 1.3 CNN<具体的见上一篇CNN> 2. deep learning处理语音等时序信号 2.1 对什么时序…
这几个ppt都是在微博上看到的,是百度的一个员工整理的. <Deep Belief Nets>,31页的一个ppt 1. 相关背景 还是在说deep learning好啦,如特征表示云云.列了一些参考文献,关于deep learning训练的,还不错. 2. 基本概念 两种产生式神经网络:(1)sigmod belief network:(2)Boltzmann Machine 多个概率密度模型如何融合? (1)mixture:就是加权平均 (2)product:乘积 (3)compositi…
目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Networks,简称ANN)貌似更为合理.神经网络最早是人工智能领域的一种算法或者说是模型,目前神经网络已经发展成为一类多学科交叉的…
深度学习(二)--深度信念网络(Deep Belief Network,DBN) 一.受限玻尔兹曼机(Restricted Boltzmann Machine,RBM) 在介绍深度信念网络之前需要先了解一下受限玻尔兹曼机:受限玻尔兹曼机(英语:restricted Boltzmann machine,RBM)是一种可通过输入数据集学习概率分布的随机生成神经网络.RBM最初由发明者保罗·斯模棱斯基(PaulSmolensky)于1986年命名为簧风琴(Harmonium),但直到杰弗里·辛顿及其合…
转自:http://blog.csdn.net/xmdxcsj/article/details/54695506 overview type author CPU/GPU feature nnet1 Karel GPU单卡训练 使用pre-training,使用early stopping nnet2 Dan 支持多GPU训练,以及多CPU多线程 使用固定epoch个数,最后几个epoch参数平均 nnet3 Dan 是nnet2的扩展 支持更多的网络类型(比如RNN/LSTM) Karel’s…
除了chain,nnet1, nnet2, nnet3训练时调整转移模型,chain模型使用类似与MMI的训练准则 概要 Karel Vesely的nnet1用到以下技术: 每一层进行预训练,基于RBMs(受限玻尔滋蔓机) 以一帧为单位进行交叉熵训练 序列-辨别性训练,用了lattice框架,以sMBR准则作为优化标准(状态的最小贝叶斯风险) early stopping using a validation 系统是建立在LDA-MLLT-fMLLR特征(从辅助的GMM模型中得到)之上的.整个D…
[原文]    浅析 Hinton 最近提出的 Capsule 计划     关于最新的 Hinton 的论文 Dynamic Routing Between Capsules,参见 https://www.zhihu.com/question/67287444/answer/251241736. 最近一次更新 17-10-11 11:00 (UTC+8).改善了一些表述,在无监督学习部分加入了'Tufas' 相关内容,以及视觉皮层的结构. 上一次更新 17-09-22 15:00 (按中国时间…
这一部分是个坑,应该对绝大多数菜鸡晕头转向的部分,因为有来自物理学界的问候. Deep learning:十九(RBM简单理解) Deep learning:十八(关于随机采样)    采样方法 [Bayes] runif: Inversion Sampling [Bayes] dchisq: Metropolis-Hastings Algorithm [Bayes] Metroplis Algorithm --> Gibbs Sampling 能量传播 纵观大部分介绍RBM的paper,都会提…
Hinton“深度学习之父”和“神经网络先驱”,新论文Capsule将推翻自己积累了30年的学术成果时 在论文中,Capsule被Hinton大神定义为这样一组神经元:其活动向量所表示的是特定实体类型的实例化参数.他的实验表明,鉴别式训练的多层Capsule系统,在MNIST手写数据集上表现出目前最先进的性能,并且在识别高度重叠数字的效果要远好于CNN. 该论文无疑将是今年12月初NIPS大会的重头戏. 一个月前,在多伦多接受媒体采访时,Hinton大神断然宣称要放弃反向传播,让整个人工智能从头…
[面向代码]学习 Deep Learning(二)Deep Belief Nets(DBNs) http://blog.csdn.net/dark_scope/article/details/9447967 分类: 机器学习2013-07-24 11:50 517人阅读 评论(5) 收藏 举报 目录(?)[-] DBNdbnsetupm DBNdbntrainm DBNrbmtrainm DBNdbnunfoldtonnm 总结 =================================…
本博文主要是CVPR2016的<Single-Image Crowd Counting via Multi-Column Convolutional Neural Network>这篇文章的阅读笔记,以及对人群计数领域做一个简要介绍. Abstract 这篇论文开发了一种可以从一个单幅的图像中准确地估计任意人群密度和任意角度的人群数目.文章提出了一种简单有效的的多列卷积神经网络结构(MCNN)将图像映射到其人群密度图上.该方法允许输入任意尺寸或分辨率的图像,每列CNN学习得到的特征可以自适应由…
1.RBM简介 受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)最早由hinton提出,是一种无监督学习方法,即对于给定数据,找到最大程度拟合这组数据的参数.RBM常用于降维,分类,回归与协同过滤,特征学习甚至 topic model ,其网络结构如下: RBM是一种两层的贝叶斯网络,是Deep Blief Network 的基本组成成分,该网络可网络结构有 n个可视节点和m个隐藏节点 ,其中每个可视节点只与m个隐藏节点相关,与其他可视节点独立,对于隐藏节点同…
原文连接:https://www.paypal-engineering.com/tag/data-science/ 摘要:伴随着数据的爆炸性增长和成千上万的机器集群,我们需要使算法可以适应在如此分布的环境下运行.在通用的分布式计算环境中运行机器学习算法具有一系列的挑战.本文探讨了如何在一个Hadoop集群中实现和部署深度学习. 波士顿的 数据科学团队正在利用尖端工具和算法来优化商业活动,且这些商业活动是基于对用户数据中的深刻透析.数据科学大量使用机器算法,可以帮助我们在数据中识别和利用模式.从互…
Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical Language Models Based on Neural Networks Mikolov的博士论文,主要将他在RNN用在语言模型上的工作进行串联 3 Extensions of Recurrent Neural Network Language Model 开山之…
本文转载自:http://www.cnblogs.com/maybe2030/p/5597716.html 阅读目录 1. 神经元模型 2. 感知机和神经网络 3. 误差逆传播算法 4. 常见的神经网络模型 5. 深度学习 6. 参考内容 目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然…
基于深度学习的安卓恶意应用检测 from:http://www.xml-data.org/JSJYY/2017-6-1650.htm 苏志达, 祝跃飞, 刘龙     摘要: 针对传统安卓恶意程序检测技术检测准确率低,对采用了重打包和代码混淆等技术的安卓恶意程序无法成功识别等问题,设计并实现了DeepDroid算法.首先,提取安卓应用程序的静态特征和动态特征,结合静态特征和动态特征生成应用程序的特征向量:然后,使用深度学习算法中的深度置信网络(DBN)对收集到的训练集进行训练,生成深度学习网络:…
CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别? https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心求助   首先,我感觉不必像 @李Shawn 同学一样认为DNN.CNN.RNN完全不能相提并论.从广义上来说,NN(或是更美…