每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.界面优化 eviews9.5 更友好,可以任意自己修改. 二.关于预测功能的优化 9.5貌似在9.0预测基础上进行了一定优化,但还是那些,9.0的版本中已经找到很多优化,Auto-ARIMA预测.VAR预测. RMSE (Root Mean Squared Error)MAE (Mean Absolute Error)MAPE (Mean…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 9.预测功能 新增需要方法的预测功能:Auto-ARIMA预测.VAR预测.eviews9.0下载链接:[软件] EViews 9 的时代已经来临!(附安装包.升级包.破解补丁.教程) 一.Auto-ARIMA预测 Auto-ARIMA预测是基于ARIMA模型之上,系统的预测方法.Eviews 9提供了便捷方式,给研究者提供了一个一般模型预测的…
Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com/Arturus/kaggle-web-tra…
https://mp.weixin.qq.com/s/JwRXBNmXBaQM2GK6BDRqMw 选自GitHub 作者:Artur Suilin 机器之心编译 参与:蒋思源.路雪.黄小天 近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com…
前沿   在文章NLP(十七)利用tensorflow-serving部署kashgari模型中,笔者介绍了如何利用tensorflow-serving部署来部署深度模型模型,在那篇文章中,笔者利用kashgari模块实现了经典的BERT+Bi-LSTM+CRF模型结构,在标注了时间的文本语料(大约2000多个训练句子)中也达到了很好的识别效果,但是也存在着不足之处,那就是模型的预测时间过长,平均预测一个句子中的时间耗时约400毫秒,这种预测速度在生产环境或实际应用中是不能忍受的.   查看该模…
数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温性的因素系数 文章目录 数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温性的因素系数 一.实验目的及数据来源 1.研究问题的概述: 2.数据来源: 二.实验内容 第一部分:"采用Newton插值预测2019城市(Asian)温度" 第二部分:"Crout求解分析城市的等温性影响因素系数" 三.实验结果与分析 一.实验目的及数据来源 1.研究…
前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章微软数据挖掘算法:Microsoft 时序算法(5)的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用Microsoft时序算法对其结果进行了预测,并且相应形成了折线预测图和模型依赖属性,有兴趣的同学可以点击查看,但是上篇文章的能给出的只是一个描述趋势的折线图,从图中我们能分析出的知识也只能通过语言描述,而这里面缺少更确切的数据支撑,作为一个凡事以数据说话的年代显然这是不够的,本篇我们将根据上一篇的预…
人们一直追求CPU分支预测的准确率,论文Simultaneous Subordinate Microthreading (SSMT)中给了一组数据,如果分支预测的准确率是100%,大多数应用的IPC会提高2倍左右. 为了比较不同分支预测算法的准确率,有个专门的比赛:Championship Branch Prediction(CPB).CPB-5的冠军是TAGE-SC-L,在TAGE-SC-L Branch Predictors Again中有详细描述: 但是分支预测准确率高意味着更复杂的算法,…
1.简单滑动平均预测法就是将所有的售价加起来除以总数 665/5=133 2.加权滑动平均预测法:需要将售价分别乘以权之和,并除以权之和 1771/13≈136.23 二.某木材公司销售房架构件,其中某种配件的销售数据如下表.试计算:3 个月的简单滑动平均预测值(计算结果直接填在表中相应空格). 答:123 月滑动预测 4 月,234 月滑动预测 5 月,345 月滑动预测 6 月. 三.设某商品第 t 期实际价格为 500 元,用指数平滑法得到第 t 期预测价格为 480 元,第 t+1 期预…
来源公式推导连接 https://blog.csdn.net/qq_36387683/article/details/88554434 关键词:灰色预测 python 实现 灰色预测 GM(1,1)模型 灰色系统 预测 灰色预测公式推导 一.前言   本文的目的是用Python和类对灰色预测进行封装 二.原理简述 1.灰色预测概述   灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:     (1) 灰色时间序列预测.用等时距观测到的反映预测对象特征的一系列数量(如产量.销…