Hadoop-Yarn-框架原理及运作机制】的更多相关文章

Hadoop 和 MRv1 简单介绍 Hadoop 集群可从单一节点(其中所有 Hadoop 实体都在同一个节点上运行)扩展到数千个节点(其中的功能分散在各个节点之间,以增加并行处理活动).图 1 演示了一个 Hadoop 集群的高级组件.   图 1. Hadoop 集群架构的简单演示 一个 Hadoop 集群可分解为两个抽象实体:MapReduce 引擎和分布式文件系统.MapReduce 引擎能够在整个集群上执行 Map 和 Reduce 任务并报告结果,其中分布式文件系统提供了一种存储模…
在说Hadoop Yarn的原理之前,我们先来看看Yarn是怎样出现的.在古老的Hadoop1.0中,MapReduce的JobTracker负责了太多的工作,包括资源调度,管理众多的TaskTracker等工作.这自然就会产生一个问题,那就是JobTracker负载太多,有点"忙不过来".于是Hadoop在1.0到2.0的升级过程中,便将JobTracker的资源调度工作独立了出来,而这一改动,直接让Hadoop成为大数据中最稳固的那一块基石.,而这个独立出来的资源管理框架,就是Ha…
简介: 本文介绍了 Hadoop 自 0.23.0 版本后新的 map-reduce 框架(Yarn) 原理,优势,运作机制和配置方法等:着重介绍新的 yarn 框架相对于原框架的差异及改进:并通过 Demo 示例详细描述了在新的 yarn 框架下搭建和开发 hadoop 程序的方法. 读者通过本文中新旧 hadoop map-reduce 框架的对比,更能深刻理解新的 yarn 框架的技术原理和设计思想,文中的 Demo 代码经过微小修改即可用于用户基于 hadoop 新框架的实际生产环境.…
老是报物理内存越界,kill container,然后把yarn.scheduler.minimum-allocation-mb设成2048就好了 跟这个yarn.nodemanager.pmem-check-enabled参数应该也有关系 在这篇文章中得到启发:http://dongxicheng.org/mapreduce-nextgen/hadoop-yarn-memory-cpu-scheduling/ 调度和隔离 Hadoop YARN同时支持内存和CPU两种资源的调度(默认只支持内存…
途径1: 途径2: 途径3: 成功! 由此,可以好好比较下,途径1和途径2 和途径3 的区别. 现在,来玩玩weekend110的joba提交的逻辑之源码跟踪 原来如此,weekend110的job提交的逻辑源码,停在这了 hello world hello tom helllo jim jim is a bad boy hello jack hello baby baby is my nvshen hello world hello tom helllo jim jim is a bad bo…
客户端编程库: 所在jar包: org.apache.hadoop.yarn.client.YarnClient 使用方法: 1 定义一个YarnClient实例: private YarnClient client: 2 构造一个Yarn客户端句柄并初始化 this.client = YarnClient.createYarnClient(); client.ini(conf)3 启动Yarn yarnClient.start()4 获取一个新的application id YarnClien…
1. 计数器应用 2. 数据清洗(ETL) 在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据.清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序. LogMapper.java @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] fi…
YARN是开源项目Hadoop的一个资源管理系统,最初设计是为了解决Hadoop中MapReduce计算框架中的资源管理问题,但是现在它已经是一个更加通用的资源管理系统,可以把MapReduce计算框架作为一个应用程序运行在YARN系统之上,通过YARN来管理资源.如果你的应用程序也需要借助YARN的资源管理功能,你也可以实现YARN提供的编程API,将你的应用程序运行于YARN之上,将资源的分配与回收统一交给YARN去管理,可以大大简化资源管理功能的开发.当前,也有很多应用程序已经可以构建于Y…
Apache Hadoop 是最流行的大数据处理工具之一.它多年来被许多公司成功部署在生产中.尽管 Hadoop 被视为可靠的.可扩展的.富有成本效益的解决方案,但大型开发人员社区仍在不断改进它.最终,2.0 版提供了多项革命性功能,其中包括 Yet Another Resource Negotiator (YARN).HDFS Federation 和一个高度可用的 NameNode,它使得 Hadoop 集群更加高效.强大和可靠.在本文中,将对 YARN 与 Hadoop 中的分布式处理层的…
源调度和资源隔离是YARN作为一个资源管理系统,最重要和最基础的两个功能.资源调度由ResourceManager完成,而资源隔离由各个NodeManager实现,在文章“Hadoop YARN中内存和CPU两种资源的调度和隔离”中,我已经介绍了YARN的内存和CPU的资源隔离,本文将介绍YARN在资源隔离方面的一些进展. 当谈及到资源时,我们通常指内存,CPU和IO三种资源.默认情况下,YARN不会对任何资源进行隔离,当然,如果采用Java语言编写的程序,则会使用JVM内置的隔离机制为内存资源…