tarjan强联通分量(模板)】的更多相关文章

题目链接:http://poj.org/problem?id=2186 题目大意:给定N头牛和M个有序对(A,B),(A,B)表示A牛认为B牛是红人,该关系具有传递性,如果牛A认为牛B是红人,牛B认为牛C是红人,那么牛A也认为牛C是红人.求被其他所有牛认为是红牛的牛的总数. 解题思路:把所有牛看成顶点,把有序对(A,B)看成从A到B的有向边,那么题目就变成了求所有顶点都可到达的顶点的总数.我们可以得到一个结论,如果一个强连通分量里有一头牛被认为是红人,那么该强联通分量里的所有牛都是红人,这显然是…
#include<cstdio> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #define N 10000 using namespace std; int x,y,n,m,t,tot,sum,top,time; int head[N],col[N],stack[N],dfn[N],low[N],a[N][N]; bool vis[N];…
void tarjan(int u) { dfn[u]=low[u]=++dfs_clock; stack_push(u); for (int c=head[u];c;c=nxt[c]) { int v=to[c]; if (!dfn[v]) { tarjan(v); low[u]=min(low[u],low[v]); } else if (!scc[v]) low[u]=min(low[u],dfn[v]); } if (low[u]==dfn[u]) { scc_cnt++; int cu…
#include <algorithm> #include <cstdio> using namespace std; ); int n,m,v,u; int edgesum,head[N]; struct Edge { int from,to,next; Edge(,,) : from(from),to(to),next(next) {} }edge[N]; int ins(int from,int to) { edge[++edgesum]=Edge(from,to,head[…
给出n个点m条边的有向图,问至少添加多少条边使得任何点都可以从s点出发可达 #include<bits/stdc++.h> #define forn(i, n) for (int i = 0 ; i < int(n) ; i++) #define fore(i, s, t) for (int i = s ; i < (int)t ; i++) #define fi first #define se second #define all(x) x.begin(),x.end() #d…
// https://www.cnblogs.com/stxy-ferryman/p/7779347.html ; struct EDGE { int to, nt; }e[N*N]; int head[N], tot; void addE(int u,int v) { e[tot].to=v; e[tot].nt=head[u]; head[u]=tot++; } int dfn[N], low[N], ind; int col[N], id; bool vis[N]; stack <int>…
题目链接:http://poj.org/problem?id=1236 题意:给定一个表示n所学校网络连通关系的有向图.现要通过网络分发软件,规则是:若顶点u,v存在通路,发给u,则v可以通过网络从u接收到. 现要求解两个问题: TaskA: 最少分发给几个学校,就可以使所有的学校都能得到软件. TaskB: 最少增加几条边,就可以使得,发软件给任一学校,所有学校都可以收到. 思路:先进行强联通分量分解,然后缩点,并计算缩点后每个点的出度.入度.入度为0的点的总数为 a ,出度为0的点总数为 b…
定义:在一张有向图中,两个点可以相互到达,则称这两个点强连通:一张有向图上任意两个点可以相互到达,则称这张图为强连通图:非强连通图有极大的强连通子图,成为强联通分量. 如图,{1},{6}分别是一个强连通分量,{2,3,4,5}是一个强连通分量.而Tarjan算法可用于求解强连通分量. Tarjan算法: Tarjan算法是基于深度优先搜索的算法,每个强连通分量都是搜索树中的一个子树. 实现:dfn[u]表示到u节点时的标记(时间戳),low[u]表示u所能走到的节点中,点的最小的次序号(dfn…
就是看是否有一些点,从其他任何点出发都可到达 定理:有向无环图中唯一出度为0的点,一定可以由任何点出发均可达. 所以缩点,若出度为零的点(强联通分量)唯一,则答案为该强联通分量中点的度数. 若不唯一,答案为0,易证. Code(懒得Tarjan,用了两次DFS): #include<cstdio> #include<cstring> #include<vector> using namespace std; vector<int>order; ],first…
题目描述 ›对于一个有向图顶点的子集S,如果在S内任取两个顶点u和v,都能找到一条从u到v的路径,那么就称S是强连通的.如果在强连通的顶点集合S中加入其他任意顶点集合后,它都不再是强连通的,那么就称S是原图的一个强连通分量(SCC: Strongly Connected Component).任意有向图都可以分解成若干不相交的强连通分量,这就是强连通分量分解.把分解后的强连通分量缩成一个顶点,就得到了一个DAG(有向无环图). 现在,请求一个有向图中强连通分量的个数 输入 第一行两个数V,E,表…