TensorFlow softmax的互熵损失】的更多相关文章

函数:tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 功能:这个函数的作用是计算 logits 经 softmax 函数激活之后的交叉熵 实例: inputdata = tf.Variable([[0.2, 0.1, 0.9]], dtype=np.float32) output = tf.nn.softmax_cross_entropy_with_logits(logits=inputdata, labels…
---恢复内容开始--- 1.softmax函数 2.tensorflow实现例子 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf input_data = tf.Variable( [[0.2, 0.2, 0.2]] , dtype = tf.float32 ) output = tf.nn.softmax(input_data) with tf.Session() as sess: init = tf…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data #download data mnist=input_data.read_data_sets('data/',one_hot=True) trainimg=mnist.train.images trainlabel=mnist.tr…
''' Created on 2017年9月13日 @author: weizhen ''' import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) 首先上来的是最简单的sigmoid激励函数, 至于为什么选他做激励函数, 1.因为这个函数能将定义域为(-inf,+inf)的值映射到(0,1)区间,便于计算(能够消除量纲的影响) 2.这个函数的变化曲线不是特变陡峭,每一点处都可导 3.这个函数的导数为y(1-y),即用他原来的…
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import tensorflow as tf # 用 tf.session.run() 里 feed_dict 参数设置占位 tensor, 如果传入 feed_dict的数据与 tensor 类型不符,就无法被正确处理 x = tf.placeholder(tf.string) y = tf.placehol…
1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示. 损失函数越小,模型的鲁棒性就越好. 损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分.模型的风险结构包括了风险项和正则项,通常如下所示: 其中,前面的均值函数表示的是经验风险函数,L代表的是损失函数,后面的 Φ 是正则化项(regularizer)或者叫惩罚项(penalty term), 它可以是L1,…
作者: 寒小阳 &&龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49949535 http://blog.csdn.net/longxinchen_ml/article/details/50001979 声明:版权所有,转载请注明出处,谢谢. 1. 线性分类器 在深度学习与计算机视觉系列(2)我们提到了图像识别的问题,同时提出了一种简单的解决方法--KNN.然后我们也看到了KNN在解决这个问题…
本文介绍了tensorflow的常用函数,源自网上整理. TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU. 下面是一些…
摘要:本文主要对tf的一些常用概念与方法进行描述. tf函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作. 并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU.下面是…
1.tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.placeholder("float") b = tf.placeholder("float") y = tf.mul(a, b) #构造一个op节点 sess = tf.Session()#建立会话 #运行会话,输入数据,并计算节点,同时打印结果 print sess…