二分查找树(Binary Search Tree)的基本操作有搜索.求最大值.求最小值.求前继.求后继.插入及删除. 对二分查找树的进行基本操作所花费的时间与树的高度成比例.例如有n个节点的完全二叉树,对它进行的基本操作的时间复杂度为O(logn).然而,如果树是一个有n个节点的线性的链,则在这种情况下的时间复杂度为O(n). 1.什么是二分查找树 二分查找树是一种有组织的二叉树.我们可以通过链接节点表示这样一棵树.每个节点包含键(key),数据(data),左子节点(left),右子节点(ri…
Go 数据结构--二分查找树 今天开始一个Go实现常见数据结构的系列吧.有时间会更新其他数据结构. 一些概念 二叉树:二叉树是每个节点最多有两个子树的树结构. 完全二叉树:若设二叉树的高度为h,除第 h 层外,其它各层 (1-h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树. 满二叉树:除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树. 平衡二叉树:平衡二叉树又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下…
表达式树和查找树的 Python 实现 目录 二叉表达式树 二叉查找树 1 二叉表达式树 表达式树是二叉树的一种应用,其树叶是常数或变量,而节点为操作符,构建表达式树的过程与后缀表达式的计算类似,只不过在遇到运算符时不是进行计算,而是将树节点赋值为运算符,并将节点的左右叶子指向两个变量构成一个基本的二叉树后再压入栈中. Expression Tree: * |___________ | | + * |_____ |_____ | | | | a b c + |__ | | d c 下面利用代码实…
106-排序列表转换为二分查找树 给出一个所有元素以升序排序的单链表,将它转换成一棵高度平衡的二分查找树 样例 标签 递归 链表 思路 类似于二分查找,每次将链表二分,中间节点作为根节点,在建立左子树与右子树,递归即可 code /** * Definition of ListNode * class ListNode { * public: * int val; * ListNode *next; * ListNode(int val) { * this->val = val; * this-…
议题:二分查找树性能分析(Binary Search Tree Performance Analysis) 分析: 二叉搜索树(Binary Search Tree,BST)是一颗典型的二叉树,同时任何节点的键值大于等于该节点左子树中的所有键值,小于等于该节点右子树中的所有键值,并且每个节点域中保存 一个记录以其为根节点的子树中所有节点个数的属性,这个属性可用于支持贪婪算法的实现: 二叉搜索树的建立是在树的底部添加新的元素,搜索即从根元素开始到达树底部的一条路径,插入和搜索相似(注意对重复键的处…
题目传送门 题意:给出一些花开花落的时间,问某个时间花开的有几朵 分析:这题有好几种做法,正解应该是离散化坐标后用线段树成端更新和单点询问.还有排序后二分查找询问点之前总花开数和总花凋谢数,作差是当前花开的数量,放张图易理解: 还有一种做法用尺取法的思想,对暴力方法优化,对询问点排序后再扫描一遍,花开+1,花谢-1.详细看代码. 收获:一题收获很多:1. 降低复杂度可以用二分 2. 线段计数问题可以在端点标记1和-1 3. 离散化+线段树 终于会了:) (听说数据很水?) 代码1:离散化+线段树…
前缀树的说明和用途 前缀树又叫单词查找树,Trie,是一类常用的数据结构,其特点是以空间换时间,在查找字符串时有极大的时间优势,其查找的时间复杂度与键的数量无关,在能找到时,最大的时间复杂度也仅为键的长度+1,在找不到时可以小于键的长度.前缀树又被称为R向查找树,因为其树中的每个节点都有R个链接,但每个节点都只有一个父节点.前缀树的使用也很广泛,其常见问题有单词拆分,实现前缀树等 实现API 单词查找树的API将使用符号表的通用API,以体现其功能的共性,在解决具体问题时稍做变动即可. publ…
题意: 有N个队伍(1 <= N <= 100,000),每个队伍开始有ai个人[0 <= ai<= 100,000,000],有Q个操作[0<=Q<= 500,000] 操作分为三种,1 A:表示在第A个队列加一个人. 2 X:表示求长度大于等于X队列数量.3 Y:表示所有长度大于等于Y的队列减去一个人. 题解: 把各个队列按长度排序 用差分数列来维护这个数组,这样求每个队列的长度就是求前缀和.每次求长度的复杂度是lgn,因为队列是按长度排序的,所以可以通过二分查找到…
1. 从扩充二叉树到哈弗曼树 扩充二叉树:对二叉树 T,加入足够多的新叶节点(而不是任意),使 T 的原有结点都变成度数为 2 的分支节点,得到的二叉树称为 T 的扩充二叉树. 对于扩充二叉树而言, 扩充二叉树新增的结点称为其外部结点(external node): 原树 T 的结点称为内部结点(internal node): 规定空树的扩充二叉树仍为空树: 2. 哈弗曼树的实现 树节点的定义: class BinTNode: def __init__(self, data, left, rig…
python 3.6.5 import bisect bisect_list=dir(bisect)print(bisect_list)bisect_list = ['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'bisect', 'bisect_left', 'bisect_right', 'insort', 'insort_le…