Spark运行架构及作业提交流程】的更多相关文章

1.yarn-cluster模式: (1)client客户端提交spark Application应用程序到yarn集群. (2)ResourceManager收到了请求后,在集群中选择一个NodeManager来为应用程序分配container容器,并启动该应用程序的ApplicationMaster. (3)ApplicationMaster 向 ResourceManager 注册,并为各个任务申请container资源. (4)ApplicationMaster申请到资源后,便于对应的N…
一.作业提交 1.1 spark-submit Spark所有模式均使用spark-submit命令提交作业,其格式如下: ./bin/spark-submit \ --class <main-class> \ # 应用程序主入口类 --master <master-url> \ # 集群的Master Url --deploy-mode <deploy-mode> \ # 部署模式 --conf <key>=<value> \ # 可选配置 .…
一.作业提交 1.1 spark-submit Spark 所有模式均使用 spark-submit 命令提交作业,其格式如下: ./bin/spark-submit \ --class <main-class> \ # 应用程序主入口类 --master <master-url> \ # 集群的 Master Url --deploy-mode <deploy-mode> \ # 部署模式 --conf <key>=<value> \ # 可选…
在讲spark之前,不得不详细介绍一下RDD(Resilient Distributed Dataset),打开RDD的源码,一开始的介绍如此: 字面意思就是弹性分布式数据集,是spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合. Resilient:弹性的,它表示的是数据可以保存在磁盘,也可以保存在内存中 Distributed:它的数据分布式存储,并且可以做分布式的计算 Dataset:一个数据集,简单的理解为集合,用于存放数据的 事实上,关于RDD有5个特性…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkContext…
1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备Spark应用程序的运行环境.在Spark中由S…
spark 运行架构基本由三部分组成,包括SparkContext(驱动程序),ClusterManager(集群资源管理器)和Executor(任务执行过程)组成. 其中SparkContext负责与ClusterManager通信,进行资源的申请.任务的分配.监控等,负责作业执行的声明周期管理.ClusterManager负责资源的分配和管理,在不同模式下担任的角色有所不同,在本地运行.Spark Standalone等运行模式中由Master提供,在YARN运行模式作用由Resource…
基本概念 在具体讲解Spark运行架构之前,需要先了解几个重要的概念: RDD:是弹性分布式数据集(Resilient Distributed Dataset)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型: DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系: Executor:是运行在工作节点(Worker Node)上的一个进程,负责运行任务,并为应用程序存储数据: 应用:用户编写的Spark应用程序: 任务:运行在E…
原文引自:http://www.cnblogs.com/shishanyuan/p/4721326.html 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkC…
http://blog.csdn.net/pipisorry/article/details/52366288 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建Spark…