Bayesian machine learning】的更多相关文章

from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse(http://www.cs.toronto.edu/~rgrosse/) Intended for: beginning machine learning researchers, practitioners Bayesian statistics is a branch of statistics…
From: http://www.cnblogs.com/bayesianML/p/6377588.html#central_problem You can do it: Dirichlet Process, HDP, HDP-HMM, IBP, CRM, etc. 本文目录结构如下: 核心主题 中心问题 参数估计 模型比较 非贝叶斯方法 最大似然 正则化 EM算法 基本推断算法 MAP估计 Gibbs采样 马尔科夫链蒙特卡洛(MCMC) 变分推断(Variational inference)…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Lecture 09 Lecture 10 提高泛化能力 介绍不同的方法去控制网络的数据表达能力,并介绍当我们使用这样一种方法的时候如何设置元参数,然后给出一个通过提早结束训练来控制网络能力(其实就是防止过拟合)的例子. 所以我们需要方法来阻止过拟合, 第一个方法也是目前最好的方法:就是简单的增加更多的数据,如果你能提供更多的数据,那么就不需要去提…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 1.2 机器学习 MLPack DLib ecogg shark 2. Closure Closure Toolbox—Clojure语言库与工具的分类目录 3…
In recent years, Kernel methods have received major attention, particularly due to the increased popularity of the Support Vector Machines. Kernel functions can be used in many applications as they provide a simple bridge from linearity to non-linear…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber 写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从 1940 年开始讲起,到…
from: http://www.erogol.com/broad-view-machine-learning-libraries/ http://www.slideshare.net/VincenzoLomonaco/deep-learning-libraries-and-rst-experiments-with-theano FEBRUARY 6, 2014 EREN 1 COMMENT Especially, with the advent of many different and in…
Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an algorithm. An algorithm is a sequence of instructions that should be carried out to transform the input to output. For example, one can devise an algori…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
Machine Learning/Introducing Logistic Function 打算写点关于Machine Learning的东西, 正好也在cnBlogs上新开了这个博客, 也就更新在这里吧. 这里主要想讨论的是统计学习, 涵盖SVM, Linear Regression等经典的学习方法. 而最近流行的基于神经网略的学习方法并不在讨论范围之内. 不过以后有时间我会以Deep Learning为label新开一个系列, 大概写写我的理解. 总之Machine Learning的la…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
Machine Learning Crash Course  |  Google Developers https://developers.google.com/machine-learning/crash-course/ Google's fast-paced, practical introduction to machine learning ML Concepts Introduction to Machine Learning As you'll discover, machine…
Python Tools for Machine Learning Python is one of the best programming languages out there, with an extensive coverage in scientific computing: computer vision, artificial intelligence, mathematics, astronomy to name a few. Unsurprisingly, this hold…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记1 Link: Hinton的CSC321课程笔记2 一年后再看课程,亦有收获,虽然看似明白,但细细推敲其实能挖掘出很多深刻的内容:以下为在线课程以及该笔记的课程重难点总结. Lecture 01 增强学习: (这是ng的拿手好戏,他做无人直升机可是做了好久)增强学习的输出是一个动作或者一系列的动作,通过与实际的场合下的环境互动来决定动作,增强学习的…
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics for machine learning? Promoted by Time Doctor Software for productivity tracking. Time tracking and productivity improvement software with screenshots…
http://www.statsblogs.com/2014/12/30/machine-learning-books-suggested-by-michael-i-jordan-from-berkeley/ Machine Learning Books Suggested by Michael I. Jordan from Berkeley December 30, 2014 By Honglang Wang (This article was originally published at…
100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45,  Gaussian Process Basics, David MacKay, 8 comments 7799 views, 3:08:32, Introduction to Machine Learning, Iain Murray 16092 views, 1:28:05, Introduction to Support Vector Machines, C…
Machine Learning Trick of the Day (2): Gaussian Integral Trick Today's trick, the Gaussian integral trick, is one that allows us to re-express a (potentially troublesome) function in an alternative form, in particular, as an integral of a Gaussian ag…
Machine Learning Trick of the Day (1): Replica Trick 'Tricks' of all sorts are used throughout machine learning, in both research and in production settings. These tricks allow us to address many different types of data analysis problems, being rough…
In this post we take a tour of the most popular machine learning algorithms. It is useful to tour the main algorithms in the field to get a feeling of what methods are available. There are so many algorithms available and it can feel overwhelming whe…
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果.监督学习的训练集要求包括输入输出,也可以说是特征和目标.训练集中的目标是由人标注的.常用于:训练神经网络.决策树.回归分析.统计分类 无监督学习:输入数据没有被标记,也没有确定的结果.样本数据类别未知,需要根据样本间的相似性对样本集进行分类,试图使类内差距最小化,…
原文地址:http://www.demnag.com/b/java-machine-learning-tools-libraries-cm570/?ref=dzone This is a list of 25 Java Machine learning tools & libraries. Weka has a collection of machine learning algorithms for data mining tasks. The algorithms can either be…
How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning In the realm of machine learning, hyperparameter tuning is a “meta” learning task. It happens to be one of my favorite subjects because it can appear like black magic, yet its sec…
Recommended Books Here is a list of books which I have read and feel it is worth recommending to friends who are interested in computer science. Machine Learning Pattern Recognition and Machine Learning Christopher M. Bishop A new treatment of classi…
I find myself coming back to the same few pictures when explaining basic machine learning concepts. Below is a list I find most illuminating. 1. Test and training error: Why lower training error is not always a good thing: ESL Figure 2.11. Test and t…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
为何有必要进修统计机器学习? 因为你没有那么多的数据 因为未知的东西最终还是需理论所解释 基于规则?基于概率? ---- 图灵奖得主.贝叶斯之父 Judea Pearl 谈深度学习局限,想造自由意志机器人 从科学角度来说,基于规则的系统就是错误的.它们为专家建模,而不是对疾病本身建模. 问题在于,程序员创建的规则没有正确的组合.当添加更多新的规则时,你必须撤消旧的规则.它是一个非常脆弱的系统. 例如,如果医院出现程序上的变动,整个系统都必须得重写.而且我们这里谈的规则不是一两个,而是有数百个,包…