NTT小结及原根求法】的更多相关文章

注意 由于蒟蒻实在太弱了~^_^~暂时无法完成证明,仅能写出简单版总结 与FFT的区别 \(NTT\)与\(FFT\)的代码区别就是把单位根换成了原根,从而实现无精度误差与浮点数的巨大常数 原根具有单位根的所有特点,原根是在特定模数下的定义 对于模数\(p\),原根\(g\)满足:\(~_{i=0}^{p-1}g^i (mod~p)\)均不同 用\(type=1,g^{\frac{p-1}{2*mid}}:type=-1,\dfrac{1}{g^{\frac{p-1}{2*mid}}}\)代替单…
NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\(a,p\)互素,且\(p>1\), 对于\(a^n \equiv 1 \pmod{p}\)最小的\(n\),我们称之为\(a\)模\(p\)的阶,记做\(\delta_p(a)\) 例如: \(\delta_7(2)=3\), \(2^1 \equiv 2 \pmod{7}\) \(2^2 \equ…
题目链接: [UOJ86]mx的组合数 题目大意:给出四个数$p,n,l,r$,对于$\forall 0\le a\le p-1$,求$l\le x\le r,C_{x}^{n}\%p=a$的$x$的数量.$p<=3000$且保证$p$是质数,$n,l,r<=10^30$. 对于$10\%$的数据,可以直接杨辉三角推.对于$20\%$的数据,因为$n$是确定的,可以递推出$C_{x+1}^{n}=C_{x}^{n}*\frac{x+1}{x+1-n}$.对于另外$20\%$的数据,可以枚举$x…
/************************************* 求解x^a=b(mod c) x在[0,c-1]上解的个数模板 输入:1e9>=a,b>=1,1e9>=c>=3. 返回:调用xaeqbmodc(a,b,c),返回解的个数 复杂度: 找原根的复杂度很低,所以总的复杂度为O(c^0.5) ************************************/ typedef long long ll; #define HASH_N 100007 str…
题目大意 有一个集合\(s\),里面的每个数都\(\geq0\)且\(<m\). 问有多少个长度为\(n\)的数列满足这个数列所有数的乘积模\(m\)为\(x\).答案模\(1004535809\). \(n\leq {10}^9,m\leq 8000\)且\(m\)是质数. 题解 先求出\(m\)的原根\(g\),这样\(1\)~\(m-1\)中的每个数都能被表示成\(g\)的幂. 因为\(g^ig^j=g^{i+j}\),这样就可以把乘积转成和,问题转化为问有多少个长度为\(n\)的数列满足…
- 概念引入 - 阶 对于$p \in N_+$且$(a, \ p) = 1$,满足$a^r \equiv 1 (mod \ p)$的最小的非负$r$为$a$模$p$意义下的阶,记作$\delta_p(a)$ - 原根 定义:若$p \in N_+$且$a \in N$,若$\delta_p(a) = \phi(p)$,则称$a$为模$p$的一个原根 相关定理: - 若一个数$m$拥有原根,那么它必定为$2, \ 4, \ p^t, \ 2p^t \ (p$为奇质数$)$的其中一个 - 每个数$…
FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低.对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更好的选择. 原根 阶 若\(a,p\)互素,且\(p>1\),对于\(a^k \equiv 1 (\mod p)\)的最小的\(k\),称为\(a\)模\(p\)的阶,记做\(\sigma_p(a)\). \(E.g.\) \(\sigma_7(2)=3\) \(2^1\equiv 2(\mod 7…
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多项式为\(A(x)=\sum_{i=0}^{n}a_ix^i,B(x)=\sum_{i=0}^{m}b_ix^i\) Prerequisite knowledge: 初中数学知识(手动滑稽) 最简单的多项式方法就是逐项相乘再合并同类项,写成公式: 若\(C(x)=A(x)B(x)\),那么\(C(x…
在Seal库和HElib库中都用到了NTT技术,用于加快多项式计算,而NTT又是FFT的优化,FFT又来自于DFT,现在具体学习一下这三个技术! 基础概念 名词区分 1.DFT:离散傅立叶变换 2.FFT:快速傅立叶变换 3.NTT:快速数论变换 4.MTT:NTT的扩展 5.多项式卷积:多项式乘法 6.根据多项式的系数表示法求点值表示法的过程叫做"求值":根据点值表示法求系数表示法的过程称为"插值" 7.求一个多项式的乘法,即求卷积,先通过傅立叶变换对系数表示法的…
本总结主要用于帮助个人理解,讲得不足之处,还请各位看官谅解 FFT 补充知识 \(n\)次单位复根(\(w_n\)): 使得\(z^n=1\)的一类复数,这些复数一共有\(n\)个,它们都分布在复平面的单位圆上,并且连线构成一个正\(n\)边形 点值表示: 多项式\(f(x)=\sum_{i=0}^{n-1}{a_ix^i}\)的点值表示为\(n\)个点\((x_i,y_i)\),其中\(y_i=f(x_i)\) 递归算法主要思路 由折半引理\(w_{2n}^{2k}=w_n^k\),将其代入可…