通俗理解word2vec的训练过程】的更多相关文章

https://www.leiphone.com/news/201706/eV8j3Nu8SMqGBnQB.html https://blog.csdn.net/dn_mug/article/details/69852740 word2vec是如何得到词向量的? skip-gram中,训练样本的形式是(input word, output word),其中output word是input word的上下文.为了减少模型噪音并加速训练速度,我们在构造batch之前要对样本进行采样,剔除停用词等噪…
https://www.jianshu.com/p/471d9bfbd72f 独热编码 独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效.举个例子,假设我们有四个样本(行),每个样本有三个特征(列),如图:     我们的feature_1有两种可能的取值,比如是男/女,这里男用1表示,女用2表示.feature_2 和feature_3各有4种取值(状态).one-hot编码就是保…
目录 1.前述 2.向量空间的梯度下降: 3.函数空间的梯度下降: 4.梯度下降的流程: 5.在向量空间的梯度下降和在函数空间的梯度下降有什么区别呢? 6.我们看下GBDT的流程图解: 7.我们看一个GBDT的例子: 8.我们看下GBDT不同版本的理解: 1.前述 从本课时开始,我们讲解一个新的集成学习算法,GBDT. 首先我们回顾下有监督学习.假定有N个训练样本,, 找到一个函数 F(x),对应一种映射使得损失函数最小.即: 如何保证最小呢?就是通过我们解函数最优化的算法去使得最小,常见的有梯…
目录 1.回顾: 1.1 有监督学习中的相关概念 1.2  回归树概念 1.3 树的优点 2.怎么训练模型: 2.1 案例引入 2.2 XGBoost目标函数求解 3.XGBoost中正则项的显式表达 4.如何生长一棵新的树? 5.xgboost相比原始GBDT的优化: 6.代码参数: 1.回顾: 我们先回顾下有监督学习中的一些核心概念: 1.1 有监督学习中的相关概念 我们模型关注的就是如何在给定xi的情况下获得ŷi.在线性模型里面,我们认为 i是x的横坐标,j是x的列坐标,本质上linear…
最近有人问起在YOLOv2训练过程中输出在终端的不同的参数分别代表什么含义,如何去理解这些参数?本篇文章中我将尝试着去回答这个有趣的问题. 刚好现在我正在训练一个YOLOv2模型,拿这个真实的例子来讨论再合适不过了,下边是我训练中使用的 .cfg 文件(你可以在cfg文件夹下找到它): 以下是训练过程中终端输出的一个截图: 以上截图显示了所有训练图片的一个批次(batch),批次大小的划分根据我们在 .cfg 文件中设置的subdivisions参数.在我使用的 .cfg 文件中 batch =…
原英文地址: https://timebutt.github.io/static/understanding-yolov2-training-output/ 最近有人问起在YOLOv2训练过程中输出在终端的不同的参数分别代表什么含义,如何去理解这些参数?本篇文章中我将尝试着去回答这个有趣的问题. 刚好现在我正在训练一个YOLOv2模型,拿这个真实的例子来讨论再合适不过了,下边是我训练中使用的 .cfg 文件(你可以在cfg文件夹下找到它): 以下是训练过程中终端输出的一个截图: 以上截图显示了所…
摘自:http://blog.csdn.net/thriving_fcl/article/details/51404655 词的向量化与word2vec简介 word2vec最初是Tomas Mikolov发表的一篇文章[1],同时开源了相应的代码,作用是将所有词语投影到K维的向量空间,每个词语都可以用一个K维向量表示. 为什么要将词用向量来表示呢?这样可以给词语一个数学上的表示,使之可以适用于某些算法或数学模型.通常将词语表示成向量有如下两种方法. 一.one-hot 表示法 假如语料库里一共…
在前面的文章中,已经介绍了从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化,本次我们从最大后验概率点估计(MAP,maximum a posteriori point estimate)的角度来理解神经网络中十分重要的weight decay正则化方法. 前面的文章中讲到了梯度下降法可以从最大似然概率估计(ML)的角度来理解,最大似然是一种典型的频率统计方法,还有一种非常不同的贝叶斯统计方法(具体的区别请参考花书).由于贝叶斯统计方法很多时候是复杂不易于处理的,因此我们更想要一种类似…
本文转载自:https://blog.csdn.net/v_july_v/article/details/51812459 通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 1 前言 2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情.当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”. 本博客内写过一些机器学习相关的文章,但上一篇技术文章“LDA主题模型”还是写于2014年11月份,毕竟自…
理解 Word2Vec 之 Skip-Gram 模型 天雨粟 模型师傅 / 果粉 https://zhuanlan.zhihu.com/p/27234078 508 人赞同了该文章 注明:我发现知乎有些公式在手机端不显示,但在PC端可以正常显示.后面的文章我会尽量用图片或者纯文本来表示公式,方便手机端阅读. 写在之前 专栏终于申请成功啦,不过现在正在申请改名中,可能要审核几天.后面我会不定期在专栏中更新机器学习和深度学习的一些内容,主要包括机器学习的比赛代码.深度学习的算法思想以及深度学习的实战…