BP算法演示】的更多相关文章

本文转载自https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ Background Backpropagation is a common method for training a neural network. There is no shortage of papers online that attempt to explain how backpropagation works, but fe…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程. 全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的…
1 BP算法的推导 图1 一个简单的三层神经网络 图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到输出.输出值的值域为,例如的值越接近0,代表该样本是"0"类的可能性越大,反之是"1"类的可能性大. 1.1 前向传播的计算 为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例: 输入的样本为: ${\Large \overrightarr…
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工神经网络结构与人工神经网络可以完美分割任意数据的原理: 本节图片来源于斯坦福Andrew Ng老师coursea课件(此大神不多介绍,大家都懂) 在说明神经网络之前,先介绍一下神经网络的基础计算单元,感知器. 上图就是一个简单的感知器,蓝色是输入的样本,g(z)是激活函数,z=x1*w1+-,a=g(z) 这…
1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inputs. ----cs231n 2.what problems to slove? 2.1introduction 神经网络的本质是一个多层的复合函数,图: 表达式为: 上面式中的Wij就是相邻两层神经元之间的权值,它们就是深度学习需要学习的参数,也就相当于直线拟合y=k*x+b中的待求参数k和b.…
看到网上有老外写的,就拿起自已之前完成的jmgraph画图组件也写了一个.想了解jmgraph的请移步:https://github.com/jiamao/jmgraph 当前演示请查看:http://graph.jm47.com/example/sort.html <!doctype html> <html> <head> <meta content="text/html; charset=UTF-8" http-equiv="co…
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出…
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chenxiaoqing.范娜Fiona.杨超.微胖.汪汪.赵巍 导读:这是<神经网络和深度学习简史>第一部分.这一部分,我们会介绍1958年感知机神经网络的诞生,70年代人工智能寒冬以及1986年BP算法让神经网络再度流行起来. 深度学习掀起海啸 如今,深度学习浪潮拍打计算机语言的海岸已有好几年,但是,…
Deep Learning 近年来在各个领域都取得了 state-of-the-art 的效果,对于原始未加工且单独不可解释的特征尤为有效,传统的方法依赖手工选取特征,而 Neural Network 可以进行学习,通过层次结构学习到更利于任务的特征.得益于近年来互联网充足的数据,计算机硬件的发展以及大规模并行化的普及.本文主要简单回顾一下 MLP ,也即为Full-connection Neural Network ,网络结构如下,分为输入,隐层与输出层,除了输入层外,其余的每层激活函数均采用…
   随着deep learning的火爆,神经网络(NN)被大家广泛研究使用.但是大部分RD对BP在NN中本质不甚清楚,对于为什这么使用以及国外大牛们是什么原因会想到用dropout/sigmoid/ReLU/change learnRate/momentum/ASGD/vanishment等问题等呢.要想了解国外大牛的思考过程,需要学习到BP在NN中的本质问题,其中涉及到NN训练对于判决边界如何形成?ASGD为什么尤其在NN中效果比二阶信息效果好?如何选择激活函数合适?为何语音识别中误差函数…
人工智能分为强人工,弱人工. 弱人工智能就包括我们常用的语音识别,图像识别等,或者为了某一个固定目标实现的人工算法,如:下围棋,游戏的AI,聊天机器人,阿尔法狗等. 强人工智能目前只是一个幻想,就是自主意识,具有自我成长.创造力的AI.如妇联2里的奥创,各种电影都有这个概念了. 我希望不久的将来能目睹这一奇迹. 不积跬步无以至千里. 先从基础讲起. 目前比较先进的算法理论据我所知应该分成3大类 1,神经网络 2,遗传算法 3,隐马尔柯夫链 这篇的主题是神经网路,其他两种我以后可能会写出来(可能!…
1.前言 看完讲卷积神经网络基础讲得非常好的cs231后总感觉不过瘾,主要原因在于虽然知道了卷积神经网络的计算过程和基本结构,但还是无法透彻理解卷积神经网络的学习过程.于是找来了进阶的教材Notes on Convolutional Neural Networks,结果刚看到第2章教材对BP算法的回顾就犯难了,不同于之前我学习的对每一个权值分别进行更新的公式推导,通过向量化表示它只用了5个式子就完成了对连接权值更新公式的描述,因此我第一眼看过去对每个向量的内部结构根本不清楚.原因还估计是自己当初…
tips: 形象化演示排序算法可以让初学者快速理解,比较好的例子:jun-lu的SortAnimate,旧金山大学的David Galles教授的算法演示课件.最近在看canvas,试着用js+canvas自己做了一个. 实现思路 获取输入字符串 存入数组S[]中 新建一个对象数组Rect[]{ x , y , target_x , target_y , text:S[i]}(注:x , y 是当前坐标,target_x , target_y 是目的坐标,text 记录字符) 排序 使用插入排序…
这些天做C#实验以及这个KMeans算法演示器,学了一下openGL,感觉有待加强. //Point.h /* Point 结构体定义及实现 结构体重载了2个运算符: 1.== //推断两个Point的坐标值是否相等 2.<< //用于显示(以友元函数的方式重载) */ #ifndef Point_h_ #define Point_h_ #include <iostream> #include <string> #include <iomanip> usin…
上面只显示代码. 详BP原理和神经网络的相关知识,请参阅:神经网络和反向传播算法推导 首先是前向传播的计算: 输入: 首先为正整数 n.m.p.t,分别代表特征个数.训练样本个数.隐藏层神经元个数.输出 层神经元个数. 当中(1<n<=100,1<m<=1000, 1<p<=100, 1<t<=10). 随后为 m 行,每行有 n+1 个整数.每行代表一个样本中的 n 个特征值 (x 1 , x 2 ,..., x n ) 与样本的 实际观測结果 y.特征值…
首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于等于1)+输出层)时,我们称之为多层人工神经网络. 1.神经单元的选择 那么我们应该使用什么样的感知器来作为神经网络节点呢?在上一篇文章我们介绍过感知器算法,但是直接使用的话会存在以下问题: 1)感知器训练法则中的输出 由于sign函数时非连续函数,这使得它不可微,因而不能使用上面的梯度下降算法来最…
关于数据结构等的学习,以及学习算法的感想感悟,听了郝斌老师的数据结构课程,其中他也提到了学习数据结构的或者算法的一些个人见解,我觉的很好,对我的帮助也是很大,算法本就是令人头疼的问题,因为自己并没有学习过算法的系统性的课程,现在还是处于不断摸索的阶段,好多算法题目根本就没有什么思路,导致自己对好多题目都很是头疼,就算是自己做过的一些算法的题目,再次遇到也还是不一定会做出来,他给出的建议就是,看懂别人的程序,然后自己去敲,一定会出错,然后调试,有错误接着调试,一直到没有错误为止,并且要时常的去复习…
1986年Rumelhart和McCelland在<并行分布式处理>中提出了BP算法,即非线性连续变换函数的多层感知器网络误差反向传播算法. 该算法的思想是:学习过程分为信号的正向传播与误差的反向传播两个过程. 正向传播时,输入样本从输入层传入,经各隐含层逐层处理后传向输出层,若输出层的实际输出与期望输出不符,则转入误差反向传播阶段. 误差反传是将输出误差以某种形式通过隐含层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层的误差信号,此信号即作为修正各单元权值的依据. 上述两个过程…
BP算法从原理到实践 反向传播算法Backpropagation的python实现 觉得有用的话,欢迎一起讨论相互学习~Follow Me 博主接触深度学习已经一段时间,近期在与别人进行讨论时,发现自己对于反向传播算法理解的并不是十分的透彻,现在想通过这篇博文缕清一下思路.自身才疏学浅欢迎各位批评指正. 参考文献 李宏毅深度学习视频 The original location of the code 关于反向传播算法的用途在此不再赘述,这篇博文主要是理解形象化理解反向传播算法与python进行实…
  误差逆传播算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多使用BP算法进行训练.   给定训练集\(D={(x_1,y_1),(x_2,y_2),......(x_m,y_m)},x_i \in R^d,y_i \in R^l\),即输入示例由\(d\)个属性描述,输出\(l\)个结果.如图所示,是一个典型的单隐层前馈网络,它拥有\(d\)个输入神经元.\(l\)个输出神经元.\(q\)个隐层神经元,其中,\(\theta_j\)表示第\(j\)个神经元的阈值,\(\gam…
在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练.在众多的训练算法中,其中最杰出的代表就是BP算法,它是至今最成功的神经网络学习算法.在实际任务中,大部分都是使用的BP算法来进行网络训练的.值得一提的是,BP算法不仅适用于多层前馈网络,对于其他类型的神经网络,例如:训练卷积神经网络和递归神经网络. 由于推导过程太多公式,因而我使用的word的截图.(推导过程参考的是周志华老师的<机器学习>(西瓜书…
如下内容段是关于C++二分查找算法演示的内容. #include <cstdio>{ int l = 0, r = n-1; int mid; while (l <= r){ mid = (l + r) >> 1; if (a[mid] == key) return mid; if (a[mid] > key) r = mid - 1; else l = mid + 1; } return -1;}{ int l = 0, r = n-1; while (l <…
目录 1. 需要的微积分知识 1.1 导数 1.2 求导的链式法则 2. 梯度下降法 2.1 梯度 2.2 梯度算法的解释 3.误差反向传播算法 3.1 理论推导 3.1.1 符号说明 3.1.2 推导过程 3.2 BP算法的小结 3.3 Python实现 3.3.1 最简单三层网络 3.4 附录: 1. 需要的微积分知识 1.1 导数 对于一元函数,在导数存在的情况下,在某一点的导数,也就是该点的斜率. 对于多元函数,对于某一点求导,则需要指明方向,两个特殊的方向,1. 偏导:在坐标轴方向的导…
前言 多层网络的训练需要一种强大的学习算法,其中BP(errorBackPropagation)算法就是成功的代表,它是迄今最成功的神经网络学习算法. 今天就来探讨下BP算法的原理以及公式推导吧. 神经网络 先来简单介绍一下神经网络,引入基本的计算公式,方便后面推导使用 图1 神经网络神经元模型 图1就是一个标准的M-P神经元模型. [神经元工作流程] 每个神经元接受n个(图1中只有3个)来自其他神经元或者直接输入的输入信号(图1中分别为x0,x1,x2),这些输入信号分别与每条“神经”的权重相…
转载请注明出处:http://www.cnblogs.com/xbinworld/p/4265530.html 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法——反向传播算法(backpropagation,BP),这个算法提出到现在近30年时间都没什么变化,可谓极其经典.也是deep learning的基石之一.还是老样子,下文基本是阅读笔记(句子翻译+自己理解),把书里的内容梳理一遍,也不为什么目的,记下来以后自己可以翻阅用. 5.2 Network Tr…
< Neural Networks Tricks of the Trade.2nd>这本书是收录了1998-2012年在NN上面的一些技巧.原理.算法性文章,对于初学者或者是正在学习NN的来说是很受用的.全书一共有30篇论文,本书期望里面的文章随着时间能成为经典,不过正如bengio(超级大神)说的“the wisdom distilled here should be taken as a guideline, to be tried and challenged, not as a pra…
实验要求:•实现10以内的非负双精度浮点数加法,例如输入4.99和5.70,能够预测输出为10.69•使用Gprof测试代码热度 代码框架•随机初始化1000对数值在0~10之间的浮点数,保存在二维数组a[1000][2]中.•计算各对浮点数的相加结果,保存在数组b[1000]中,即b[0] = a[0][0] + a[0][1],以此类推.数组a.b即可作为网络的训练样本.•定义浮点数组w.v分别存放隐层和输出层的权值数据,并随机初始化w.v中元素为-1~1之间的浮点数.•将1000组输入(a…
最近这段时间系统性的学习了 BP 算法后写下了这篇学习笔记,因为能力有限,若有明显错误,还请指正. 什么是梯度下降和链式求导法则 假设我们有一个函数 J(w),如下图所示. 梯度下降示意图 现在,我们要求当 w 等于什么的时候,J(w) 能够取到最小值.从图中我们知道最小值在初始位置的左边,也就意味着如果想要使 J(w) 最小,w的值需要减小.而初始位置的切线的斜率a > 0(也即该位置对应的导数大于0),w = w – a 就能够让 w 的值减小,循环求导更新w直到 J(w) 取得最小值.如果…
带插件的排序算法演示器 请尊重本人的工作成果,转载请留言.并说明转载地址,谢谢. 地址例如以下: http://blog.csdn.net/fukainankai/article/details/27710883 本节将通过一个实例来说明GDI+在MFC中的应用.这个算法演示器事实上是本人算法系列的一个开端,因为csdn没有树状的文件夹结构,咱也仅仅好使用链表了不是?好了.废话不多说,開始今天的文章. (一)功能说明 我们初步制定功能例如以下: (1). 可以通过柱状图.自己主动展示排序算法的交…
BP算法在minist上的简单实现 数据:http://yann.lecun.com/exdb/mnist/ 参考:blog,blog2,blog3,tensorflow 推导:http://www.cnblogs.com/yueshangzuo/p/8025157.html 基本实现 import struct import random import numpy as np from math import sqrt class Data: def __init__(self): print…