题目大意:求小于n的与n不互质的数的和. 题解:首先欧拉函数可以求出小于n的与n互质的数的个数,然后我们可以发现这样一个性质,当x与n互质时,n-x与n互质,那么所有小于n与n互质的数总是可以两两配对使其和为n,这也就是为什么当n大于2时欧拉函数都是偶数,知道这一点后,就可以计算出小于n与n互质的数的和了,那么不互质的和只要用总和来减就可以了. #include <cstdio> typedef long long LL; LL n,ans; LL Eular(LL n){ LL ret=1;…