P1272】的更多相关文章

P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟一的.因此,牧场运输系统可以被构建成一棵树.\(John\)想要知道另一次地震会造成多严重的破坏.有些道路一旦被毁坏,就会使一棵含有\(P(1≤P≤N)\)个牲口棚的子树和剩余的牲口棚分离,\(John\)想知道这些道路的最小数目. 输入输出格式 输入格式: 第1行:…
P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟一的.因此,牧场运输系统可以被构建成一棵树.\(John\)想要知道另一次地震会造成多严重的破坏.有些道路一旦被毁坏,就会使一棵含有\(P(1≤P≤N)\)个牲口棚的子树和剩余的牲口棚分离,\(John\)想知道这些道路的最小数目. 输入输出格式 输入格式: 第1行:…
P1272 重建道路 题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟一的.因此,牧场运输系统可以被构建成一棵树.John想要知道另一次地震会造成多严重的破坏.有 些道路一旦被毁坏,就会使一棵含有P(1≤P≤N)个牲口棚的子树和剩余的牲口棚分离,John想知道这些道路的最小数目. ps:原本想的是\(f[i][j]\)表示以第\(i\)个点为根的子树,出来\(j\)个…
P1272 重建道路 题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟一的.因此,牧场运输系统可以被构建成一棵树.John想要知道另一次地震会造成多严重的破坏.有些道路一旦被毁坏,就会使一棵含有P(1≤P≤N)个牲口棚的子树和剩余的牲口棚分离,John想知道这些道路的最小数目. 输入输出格式 输入格式: 第1行:2个整数,N和P 第2..N行:每行2个整数I和J,表示…
P1272 重建道路 题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟一的.因此,牧场运输系统可以被构建成一棵树.John想要知道另一次地震会造成多严重的破坏.有些道路一旦被毁坏,就会使一棵含有P(1≤P≤N)个牲口棚的子树和剩余的牲口棚分离,John想知道这些道路的最小数目. 输入输出格式 输入格式: 第1行:2个整数,N和P 第2..N行:每行2个整数I和J,表示…
类型:树形背包 传送门:>Here< 题意:给出一棵树,要求断开$k$条边来分离出一棵有$P$个节点的子树.求最小的$k$ 解题思路 和上一题类型相同,但不那么好做了——分离出的一棵子树肯定是在一起的,不能是散的,因此这给dp带来了难度 $dp[u][i][j]$表示节点$u$的子树内,在前$i$棵子树内分离出有$j$个节点的子树,最少断的边.特别需要注意的是,这里的有$j$个节点的子树必须包含节点$u$ 想到这个定义以后就不难了,有方程$$dp[u][i][j]=Min\{dp[u][i-1…
题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟一的.因此,牧场运输系统可以被构建成一棵树.John想要知道另一次地震会造成多严重的破坏.有些道路一旦被毁坏,就会使一棵含有P(1≤P≤N)个牲口棚的子树和剩余的牲口棚分离,John想知道这些道路的最小数目. 输入输出格式 输入格式: 第1行:2个整数,N和P 第2..N行:每行2个整数I和J,表示节点I是节点J的父节点…
题目大意:给定一个 N 个节点的树,求至少剪掉多少条边才能使得从树中分离出一个大小为 M 的子树. 题解:考虑树形 dp,定义 \(dp[u][i][t]\) 为以 u 为根节点与前 i 个子节点构成的子树中,保留 t 个节点(包括根节点)的最小代价,则状态转移方程为 \(dp[u][i][t]=min(dp[u][i][t],dp[u][i-1][t-k]+dp[v][son(v)][k]-2)\),在这里之所以减掉 2,是因为在前 i-1 个子节点与 u 构成的子树中,必然不包括第 i 个子…
嘟嘟嘟 这好像是一种树上背包. 我们令dp[i][j] 表示在 i 所在的子树中(包括节点 i)分离出一个大小为 j 的子树最少需割多少条边. 那么转移方程就是 dp[u][j] = min(dp[u][j], dp[u][j - k] + dp[v][k] - 1) (v是u的一个儿子) 理解起来就是在u所在子树中切 j 个节点,等于在u中切 j - k 个节点加上在v所在子树中切 k 个节点所需要切的边数之和.又因为切出来的这两部分要合并得到一个节点数为 j 的,所以要减1. #includ…
题目链接 题解 树形dp \(f_{i, j}\)表示以\(i\)为根的子树切出联通块大小为\(j\)的最小答案 显然\(f[i][1]\)为与\(i\)连的边数 设\(v\)是\(u\)的儿子 那么有\(f[u][i]=f[u][i-j]+f[v][j]-2\),因为\(u->v\)这条边算了两次 注意\(i\)要从大到小枚举 Code #include<bits/stdc++.h> #define LL long long #define RG register using name…