欧拉函数 and 大数欧拉 (初步)】的更多相关文章

前两天总结了素数筛法,其中就有Eular筛法.现在他又来了→→ φ(n),一般被称为欧拉函数.其定义为:小于n的正整数中与n互质的数的个数. 毕竟是伟大的数学家,所以以他名字命名的东西很多辣. 对于φ(n),我们有这样[三个性质]: (1) [若n为素数],则φ(n) = n - 1 显然,由于n为素数,1~n-1与n都只有公因子1,因此φ(n) = n - 1. 比如φ(11)=10={1,2,3,4,5,6,7,8,9,10}; (2) [若n = p^k],p为素数(即n为单个素数的整数幂…
和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) \),然后很显然对于mu\( g(n)=1\),对于\( g(n)=n*(n+1)/2 \),然后可以这样转化一下: \[ g(n)=\sum_{i=1}^{n}\sum_{d|n}\phi(d) \] \[ =\sum_{d=1}^{n}\phi(d)\left \lfloor \frac{n}…
题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1). 设f(n)为 集合S{(x, y) | x<y且x.y互素} 的个数,则所求答案为2f(n)+1 f(n)表达式为: ,其中φ(n)为欧拉函数 这里有欧拉函数的一些介绍 #include <cstdio> ; ], sum[maxn + ]; void phi_table(int n)…
欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; int Euler(int n) { int res=n; ;i*i<=n;i++) { ) { n/=i; res-=(res/i); ) n/=i; } }…
Description Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of…
题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段. 但是, BG 并不知道要有多少人来. 他只知道, 来的人数为n的约数,且小于n. 显然把蛋糕平均分成 n 块一定能满足要求.但是, BG 想要分出的块数尽量少.现在 BG 想知道,他要把蛋糕分成至少多少块,才能使得不管多少人来都能满足要求. 输入格式 输入文件名为 cake.in. 输入共一个整…
找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(hidden) 卡特兰数/第二类斯特林数(hidden) 置换群(hidden) 莫比乌斯反演III(hidden) 线性筛(hidden) 欧拉函数 计算单个欧拉函数 设\(n\)的唯一分解为\(p_i\),则\(\varphi(n)=n\prod(1-\frac{1}{p_i})\). 奇偶性 \…
题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2,n)+gcd(3,n)+…………gcd(n-1,n)+gcd(n,n),(1<=n<2^31)是多少? 放心吧!!!暴力肯定是做不出来的,如果你数论只会gcd(和我一样),那还是学点东西再来挑战这个题吧!    这个题需要用到欧拉函数的知识…… 欧拉函数的定义:对正整数n,欧拉函数是小于n的正整数…
题目链接: https://cn.vjudge.net/problem/SGU-102#author=0 题目大意: 求解小于等于N的且与N互质的数字有多少个 解题思路: 直接求欧拉函数即可 关于欧拉函数的知识:传送门 这里可以直接暴力,但是如果不会欧拉函数单个求,打表求的话还是看上述链接. #include<bits/stdc++.h> using namespace std; int main() { ; scanf("%d", &n); ; i <= n…
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT 对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 Source 湖北省队互测 若gcd(a,b)=素数p,则a=px,b=py且gcd(x,y)=1,这样,我们枚举小于n的素数p,对于每个素数p,只需求小于等于n/p的数中互质的数的对…