deep-in-es6(三)】的更多相关文章

========================================================================================== 最近一直在看Deep Learning,各类博客.论文看得不少 但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox 只是跟着Andrew Ng的UFLDL tutorial 写了些已有框架的代码(这部分的代码见github) 后来发现了一个matlab的Deep…
http://www.cnblogs.com/tornadomeet/archive/2013/05/05/3061457.html 前言: 本节主要是来简单介绍下stacked CNN(深度卷积网络),起源于本人在构建SAE网络时的一点困惑:见Deep learning:三十六(关于构建深度卷积SAE网络的一点困惑).因为有时候针对大图片进行recognition时,需要用到无监督学习的方法去pre-training(预训练)stacked CNN的每层网络,然后用BP算法对整个网络进行fin…
一.字符Unicode表示方法 ES6中可以使用以下6种方法表示字符 '\z' === 'z' // true '\172' === 'z' // true '\x7A' === 'z' // true '\u007A' === 'z' // true '\u{7A}' === 'z' // true 二.codePointAt() 该方法和charCodeAt() 作用一样    但是能处理4个字节表示的字符(Unicode码点大于0xFFFF的字符) 三.At() 和charAt()一样  …
1.Array.form ES6中,Array.from = function(items,mapfn,thisArg) {  }   Array.from 用于将 类数组 和 可遍历对象(实现了Iterator接口的对象以及set.map)对象,转换成真正的数组. (1)   第一个参数:items,类数组 和 可遍历对象.     在ES5中,将类数组转换成真正数组,如下: var arr=[].slice.call(likeArray);        实际应用中,类数组对象常常包括 No…
扩展运算符( spread )是三个点(...).它好比 rest 参数的逆运算,将一个数组转为用逗号分隔的参数序列. console.log(...[1,2,3]); console.log(1,...[1,2,3],5); // 1 1 2 3 5 合并多个数组 通过push函数,将一个数组添加到另一个数组的尾部:有了扩展运算符,就可以直接将数组传入push方法: 扩展运算符提供了数组合并的新写法. var arr1 = [0,1,2]; var arr2 = [3,4,5]; arr1.p…
基本用法 关于Promise的资料,网上有很多了,这里简单粗暴一点,直接上代码. 假设我们要做一个访问后端API的函数,那么我们可以这样模拟一下. const mySend = (url, data) => { // 接收url 和data,假装向后端提交 console.log('url:', url, data) // 定义一个实例 const p = new Promise((resolve, reject)=>{ // resolve,reject是形式参数,可以是任意写法,如(res…
数据降维的重要性就不必说了,而用NN(神经网络)来对数据进行大量的降维是从2006开始的,这起源于2006年science上的一篇文章:reducing the dimensionality of data with neural networks,作者就是鼎鼎有名的Hinton,这篇文章也标志着deep learning进入火热的时代. 今天花了点时间读了下这篇文章,下面是一点笔记: 多层感知机其实在上世纪已经被提出来了,但是为什么它没有得到广泛应用呢?其原因在于对多层非线性网络进行权值优化时…
前言: 本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html.其实在上一篇博文Deep learning:二(linear regression练习)中已经简单介绍过一元线性回归问题的求解,但是那个时候用梯度下降法求解时,给出的学习率是固定的0.7.而本次实验…
...扩展运算符:可以将数组或对象里面的值展开 const b = {a:1,b:2} console.log({...b,c:3}); //{a:1,b:2,c:3} 一定程度上可以替代apply方法 // ES5 的写法 function f(x, y, z) { // ... } var args = [0, 1, 2]; f.apply(null, args); // ES6 的写法 function f(x, y, z) { // ... } var args = [0, 1, 2];…
写在前面的废话: 出了托福成绩啦,本人战战兢兢考了个97!成绩好的出乎意料!喜大普奔!撒花庆祝! 傻…………寒假还要怒学一个月刷100庆祝个毛线………… 正题: 题目是CNN,但是CNN的具体原理和之后会写一篇博客在deeplearning目录下详细说明. 简单地说,CNN与NN相比独特之处在于用部分连接代替全链接,并用pooling来对数据进行降维,这样做有几个好处: 对于大图像来说所需训练的参数大大减少 获取图像的部分特征而非全局特征 pooling使得网络的输出结果具有一定的平移和遮挡不变…
扩展运算符将一个数组转为用逗号分隔的参数序列 console.log(...[a, b, c]) // a b c 用于: 1 将一个数组,变为参数序列 let add = (x, y) => x + y; let numbers = [3, 45]; console.log(add(...numbers)) 2 使用扩展运算符展开数组代替apply方法,将数组转为函数的参数 //ES5 取数组最大值 console.log(Math.max.apply(this, [654, 233, 727…
第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目,有新开辟的路线,有有始无终的遗憾,也有还在继续的坚持.期间有数不清的弯路.失落,有无法一一道明的挫败和孤独,也有每日重复单调训练而积累起来的自信与欣喜.和朋友聊天让我意识到,将我目前所摸索到的一些材料和路径分享出来,使其他想要进入这个领域的人或者仅仅是兴趣爱好者能够少走一些弯路,大概是有些意义的.…
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE >的论文,也是这篇论文揭开了深度学习的序幕. 笔记 摘要:高维数据可以通过一个多层神经网络把它编码成一个低维数据,从而重建这个高维数据,其中这个神经网络的中间层神经元数是较少的,可把这个神经网络叫做自动编码网络或自编码器(autoencoder).梯度下降法可用来微调这个自动编码器的权值,但是只有在初始化权值…
前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 难点:本实验难点在于运行时间比较长,跑一次都快一天了,并且我还要验证各种代价函数的对错,所以跑了很多次. 实验内容:Exercise:Independent Component Analysis.从数据库Sampled 8x8 patches from the STL-10 dataset…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…
deep learning新征程(一) zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2015-11-26   声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人才疏学浅…
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key Words:有监督学习与无监督学习.分类.回归.密度预计.聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,Y). 有监督学习:最常见的是regression & classification. regression:Y是实数ve…
https://blog.csdn.net/zouxy09/article/details/9993371 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢. 本文的论文来自: Notes on Convolutio…
[面向代码]学习 Deep Learning(二)Deep Belief Nets(DBNs) http://blog.csdn.net/dark_scope/article/details/9447967 分类: 机器学习2013-07-24 11:50 517人阅读 评论(5) 收藏 举报 目录(?)[-] DBNdbnsetupm DBNdbntrainm DBNrbmtrainm DBNdbnunfoldtonnm 总结 =================================…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
from:http://blog.csdn.net/abcjennifer/article/details/7826917 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得. Key Words:有监督学习与无监督学习,分类.回归,密度估计.聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,…
目录: 一.RBM 二.Deep Brief Network 三.Deep Autoencoder 一.RBM 1.定义[无监督学习] RBM记住三个要诀:1)两层结构图,可视层和隐藏层:[没输出层]2)层内无连接,层间全连接:3)二值状态值,前向反馈和逆向传播求权参.定义如下: 一般来说,可见层单元用来描述观察数据的一个方面或一个特征,而隐藏层单元的意义一般来说并不明确,可以看作特征提取层. 比较通俗解释RBM的博客:https://blog.csdn.net/u013631121/artic…
1.es6三种声明方式: a.var 全局声明 b.let  局部变量声明 c.const     常量声明 2.变量的解构赋值 a.数组的解构赋值 等号左边与右边形式统一  let [a,[b,c],d]=[1,[2,3],4]; 可以使用默认值 let [a,b="paradise"]=['追逐者'] console.log(a+b); ps:undefined表示没有值 null有值值为null b.对象的解构赋值 let {head,foot} = {head:'paradis…
实时实例分割的Deep Snake:CVPR2020论文点评 Deep Snake for Real-Time Instance Segmentation 论文链接:https://arxiv.org/pdf/2001.01629.pdf 摘要 本文提出了一种基于轮廓的深度snake方法用于实例的实时分割.与最近一些直接从图像中回归物体边界点坐标的方法不同,deep snake使用神经网络迭代地将初始轮廓变形到物体边界,这一方法用基于学习的方法实现了snake算法的经典思想.对于轮廓的结构化特征…
建议按序阅读 1. Convolutional Neural Networks卷积神经网络: http://blog.csdn.net/zouxy09/article/details/8781543 2. Deep learning:三十八(Stacked CNN简单介绍): http://www.cnblogs.com/tornadomeet/archive/2013/05/05/3061457.html 3. 深度学习(卷积神经网络)一些问题总结 http://blog.csdn.net/n…
零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了,最近随着深度学习的兴起又开始焕发青春了,把imagenet测试的准确度提高了非常多,一个是Alex的工作,然后最近好像Zeiler又有突破性的成果,可惜这些我都没看过,主要是imagenet的数据太大了,我根本没有可能跑得动,所以学习的积极性有些打折扣.不说那么多,还是先实现一个最基础的CNN再说吧…
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html 参考资料: UFLDL wiki UFLDL Stanford tornadomeet博客整理得很好,欣赏这样的学习态度. 该博客基本取材于UFLDL,在两者取舍间还是选择按照tornadomeet博客的剧本走一遍. 因为大部分概念都已熟知,在此过一遍的意义在于查缺补漏,巩固基础. 该博客年初发现,如今我也有了这样的“博客导航”,这便是正能量的传播…
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html Deep learning:六(regularized logistic回归练习) Deep learning:五(regularized线性回归练习) Deep learning:四(logistic regression练习) Deep learning:三(Multivariance Linear Regression练习) Deep lea…