Html学习(三) 分类学习】的更多相关文章

代码: <h1>这是一级分类吗</h1> <h2>这是二级分类吗</h2> <h3>这是三级分类吗 </h3> 效果: 介绍: <abbr>(表示缩写),<em>(表示强调).<strong>(表示更强地强调),<cite>(表示引用),<address>(表示地址)等等.这些标签不是为了定义显示效果而存在的.所以从浏览器里看它们可能没有不论什么效果,也可能不同的浏览器对这些…
1.首先打开eclipse,新建一个Dynamac web project项目文件 2.在WebContent单击右键创建JSP File 3.过程 4.简单的jsp代码 运行结果: 5.导出war文件 5.1关闭tomcat 5.2  Export →WAR file 5.3导出的.war 文件放在apache-tomcat-9.0.0.M20文件的webapps里 5.4进入bin文件,开启tomcat 5.4.1回到webapps文件夹得到: 5.4.2  aaa文件夹中出现如下5个文件…
一.多环境配置 在工作中,对于开发环境.测试环境.生产环境的配置肯定都不相同,比如我们开发阶段会在自己的电脑上安装 mysql ,连接自己电脑上的 mysql 即可,但是项目开发完毕后要上线就需要该配置,将环境的配置改为线上环境的. 来回的修改配置会很麻烦,而 SpringBoot 给开发者提供了多环境的快捷配置,需要切换环境时只需要改一个配置即可.不同类型的配置文件多环境开发的配置都不相同,接下来对不同类型的配置文件进行说明 1.1 yaml文件 在 application.yml 中使用 -…
20145213<Java程序设计>第三周学习总结 教材学习内容总结 正所谓距离产生美,上周我还倾心于Java表面的基础语法.其简单的流程结构,屈指可数的基本类型分类,早已烂熟于心的运算符等,让我萌生出Java不过尔尔的幻觉.然而,快乐的时间总是短暂的.随着本周学习程度的不断深入,之前一直小觑为加菲猫的Java竟也露出了它的獠牙.本周的学习任务,无论从学习难度还是学习量,与之前都不可同日而语.犹记得周三的时候,我就开始自习教材的第四章了,红红火火恍恍惚惚,看一遍下来后,脑中梳理一遍,竟无所得.…
前言: 上一篇比较详细的介绍了卡方检验和卡方分布.这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行.然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样就完美了. 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 文本分类学习(三)特征权重(TF/IDF)和特征提取        文本分类学习(四)特征选择之卡方检验 文本分类学习(五)机器学习SVM的前奏-特征提取(卡方检验续集) 一,回顾卡方检验 1.公式一: 先回顾一下卡方检验: 卡…
前言: 经历过文本的特征提取,使用LibSvm工具包进行了测试,Svm算法的效果还是很好的.于是开始逐一的去了解SVM的原理. SVM 是在建立在结构风险最小化和VC维理论的基础上.所以这篇只介绍关于SVM的理论基础.参考this paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/svmtutorial.pdf 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 文本分类学习(三)特征权重…
直接从特征提取,跳到了BoostSVM,是因为自己一直在写程序,分析垃圾文本,和思考文本分类用于识别垃圾文本的短处.自己学习文本分类就是为了识别垃圾文本. 中间的博客待自己研究透彻后再补上吧. 因为获取垃圾文本的时候,发现垃圾文本不是简单的垃圾文本,它们具有多个特性: 1. 种类繁多,难有共同的特征.涵盖各行各业的广告,或者政治敏感内容,或者色情信息.不像对文本分类那样,属于一类的文本,他们的内容都属于那个领域之内,特征提取就很方便 2. 具有一定的伪装性,表面上看80%的内容都属于正常,只有2…
前言: 对于SVM的了解,看前辈写的博客加上读论文对于SVM的皮毛知识总算有点了解,比如线性分类器,和求凸二次规划中用到的高等数学知识.然而SVM最核心的地方应该在于核函数和求关于α函数的极值的方法:SMO算法(当然还有很多别的算法.libsvm使用的是SMO,SMO算法也是最高效和简单的),还有松弛变量..毕设答辩在即,这两个难点只能拖到后面慢慢去研究了. 于是我便是用了LibSvm,也就是台湾大学某某教授写的一个专门用于svm的工具包,其中有java语言的,python语言的,c语言的.我只…
126 篇殿堂级深度学习论文分类整理 从入门到应用 | 干货 雷锋网 作者: 三川 2017-03-02 18:40:00 查看源网址 阅读数:66 如果你有非常大的决心从事深度学习,又不想在这一行打酱油,那么研读大牛论文将是不可避免的一步.而作为新人,你的第一个问题或许是:“论文那么多,从哪一篇读起?” 本文将试图解决这个问题——文章标题本来是:“从入门到绝望,无止境的深度学习论文”.请诸位备好道具,开启头悬梁锥刺股的学霸姿势. 开个玩笑. 但对非科班出身的开发者而言,读论文的确可以成为一件很…
首先科普一下python里面对于数组的处理,就是如果获取数组大小,以及数组元素数量,这个概念是不一样的,就是一个size和len处理不用.老规矩,上代码: arr2 = np.array([-19.51679711, -18.06166131, -16.65282549, 8.70287809,9.9485567 , 11.23867649, 3,4]) pprint(arr2.size) pprint(len(arr2)) >>8 >>8 貌似两者没啥区别,但是真的是这样吗? C…