cost function,一般得到的是一个 scalar-value,标量值: 执行 SGD 时,是最终的 cost function 获得的 scalar-value,关于模型的参数得到的: 1. 分类和预测 评估: 准确率: 速度:健壮性: 可规模性: 可解释性: 2. Data Augmentation 平移.旋转/翻转.缩放.加噪声 3. 溢出 矩阵求逆,W=PQ−1 W = P/(Q+1e-5*eye(d)); 4. batch norm.relu.dropout 等的相对顺序 Or…
前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,ConvNet)是一种特殊的深度学习神经网络,近年来在物体识别.图像重绘.视频分析等多个层面得到了广泛的应用.本文将以VGG16预训练模型为例子,从人脸识别.预训练模型.图片风格迁移.滤波分析.热力图等多过领域介绍 CNN 的应用. 目录 一.卷积神经网络的原理 二.构建第一个 CNN 对 MNIST 数字…
参考:机器学习&深度学习算法及代码实现 Python3机器学习 传统机器学习算法 决策树.K邻近算法.支持向量机.朴素贝叶斯.神经网络.Logistic回归算法,聚类等. 一.机器学习算法及代码实现–决策树 决策树学习笔记(Decision Tree) 引自:Python3<机器学习实战>学习笔记(二):决策树基础篇之让我们从相亲说起 github:https://github.com/Jack-Cherish/Machine-Learning/tree/master/Decision…
深度学习实战篇-基于RNN的中文分词探索 近年来,深度学习在人工智能的多个领域取得了显著成绩.微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平.百度在中文语音识别上取得了97%的准确率,已经超过了人类的识别能力. 随着深度学习在越来越多的领域中取得了突破性进展,自然语言处理这一人工智能的重要领域吸引了大批的研究者的注意力.最近谷歌发布了基于深度学习的机器翻译(GNMT),和基于短语的机器翻译相比,错误率降低了55%-85%以上,从而又引发…
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen NLP,用于概率图模型的Pyro,扩展了PyTorch的功能.通过学习<深度学习入门之PyTorch>,可以从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型.学到机器学习中的线性回归和 Logistic 回归.深度…
自学成才秘籍!机器学习&深度学习经典资料汇总 转自:中国大数据: http://www.thebigdata.cn/JiShuBoKe/13299.html [日期:2015-01-27] 来源:亚马逊  作者: [字体:大 中 小] 小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感…
机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2) <机器学习&&深度学习> 视频课程资源…
从业这么久了,做了很多项目,一直对机器学习的基础课程鄙视已久,现在回头看来,系统的基础知识整理对我现在思路的整理很有利,写完这个基础篇,开始把AI+cv的也总结完,然后把这么多年做的项目再写好总结. 参考:机器学习&深度学习算法及代码实现 学习路线第一步:数学主要为微积分.概率统计.矩阵.凸优化 第二步:数据结构/算法常见经典数据结构(比如字符串.数组.链表.树.图等).算法(比如查找.排序)同时,辅助刷leetcode,提高编码coding能力 第三步:Python数据分析掌握Python这门…
有一定Python和TensorFlow基础的人看应该很容易,各领域的应用,但比较广泛,不深刻,讲硬件的部分可以作为入门人的参考. <Keras快速上手基于Python的深度学习实战>系统地讲解了深度学习的基本知识.建模过程和应用,并以深度学习在推荐系统.图像识别.自然语言处理.文字生成和时间序列中的具体应用为案例,详细介绍了从工具准备.数据获取和处理到针对问题进行建模的整个过程和实践经验. <Keras快速上手>PDF,531页,带书签目录,彩色配图,文字可以复制. 配套源代码和…
0.前言 深度学习用的有一年多了,最近开始NLP自然处理方面的研发.刚好趁着这个机会写一系列NLP机器翻译深度学习实战课程. 本系列课程将从原理讲解与数据处理深入到如何动手实践与应用部署,将包括以下内容:(更新ing) NLP机器翻译深度学习实战课程·零(基础概念) NLP机器翻译深度学习实战课程·壹(RNN base) NLP机器翻译深度学习实战课程·贰(RNN+Attention base) NLP机器翻译深度学习实战课程·叁(CNN base) NLP机器翻译深度学习实战课程·肆(Self…
深度学习用的有一年多了,最近开始NLP自然处理方面的研发.刚好趁着这个机会写一系列NLP机器翻译深度学习实战课程. 本系列课程将从原理讲解与数据处理深入到如何动手实践与应用部署,将包括以下内容:(更新ing) NLP机器翻译深度学习实战课程·零(基础概念) NLP机器翻译深度学习实战课程·壹(RNN base) NLP机器翻译深度学习实战课程·贰(RNN+Attention base) NLP机器翻译深度学习实战课程·叁(CNN base) NLP机器翻译深度学习实战课程·肆(Self-Atte…
资源介绍 链接:http://pan.baidu.com/s/1kV6nWJP 密码:ryfd     链接:http://pan.baidu.com/s/1dEZWlP3 密码:y82m 更多资源 请加入  机器学习交流qq群:342942219 源自: 最全的机器学习&深度学习入门视频课程集 - CSDN博客 https://blog.csdn.net/ldily110/article/details/53087437…
学卷积神经网络的理论的时候,我觉得自己看懂了,可是到了用代码来搭建一个卷积神经网络时,我发现自己有太多模糊的地方.这次还是基于MINIST数据集搭建一个卷积神经网络,首先给出一个基本的模型,然后再用Batch Norm.Dropout和早停对模型进行优化:在此过程中说明我在调试代码过程中遇到的一些问题和解决方法. 一.搭建基本的卷积神经网络 第一步:准备数据 在<Hands on Machine Learning with Scikit-Learn and TensorFlow>这本书上,用的…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
  小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
Batch Normalization Ioffe 和 Szegedy 在2015年<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>论文中提出此方法来减缓网络参数初始化的难处. Batch Norm优点 减轻过拟合 改善梯度传播(权重不会过高或过低) 容许较高的学习率,能够提高训练速度. 减轻对初始化权重的强依赖 作为一种正则化的方式,在某种程度上减少对d…
  第一部分 基础语言   pandax视频教程 链接: https://pan.baidu.com/s/1pLqavVX 密码: fath python入门到精通 链接: https://pan.baidu.com/s/1mhVNIkC 密码: cvp3   第二部分 数据篇   链接: https://pan.baidu.com/s/1pLK25zP 密码: qtuu   第三部分 机器学习部分   吴恩达机器学习 链接: https://pan.baidu.com/s/1i5QKxiX 密…
Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生.但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层.本文将首先引入Dropout的原理和实现,然后观察现代深度模型Dropout的使用情况,并与BN进行实验比对,从原理和实测上来说明Dropout已是过去式,大家应尽可能使用BN技术. 一.Dropout原理 根据wikipedia定义,dropout是指在神经网络中丢弃掉一些隐藏或可见单元.通常来说,是在神…
原文:http://developer.51cto.com/art/201501/464174.htm 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning i…
转自 飞鸟各投林 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始…
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Ju…
感谢:https://github.com/ty4z2008/Qix/blob/master/dl.md <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber…
0.0 计算机科学 <Lex 与 Yacc> Think Complexity(使用 Python 语言) GitHub - AllenDowney/ThinkComplexity: Code for Allen Downey's book Think Complexity, published by O'Reilly Media. 0.1 语言类书 C/C++ Python Python 编程快速上手 -- 让繁琐工作自动化 R 语言 1. 计算机算法 算法导论 计算机程序设计艺术 I:基本…
1.相关准备 1.1 手写数字数据集 这篇博客上有.jpg格式的图片下载,附带标签信息,有需要的自行下载,博客附带百度云盘下载地址(手写数字.jpg 格式):http://blog.csdn.net/eddy_zheng/article/details/50496194 1.2深度学习框架 本实战基于caffe深度学习框架,需自行参考相关博客搭建环境,这里不再对如何搭建环境作介绍. 2.数据准备 2.1 准备训练与验证图像 准备好你想训练识别的图像数据之后,将其划分为训练集与验证集,并准备好对应…
1.多任务学习导引 多任务学习是机器学习中的一个分支,按1997年综述论文Multi-task Learning一文的定义:Multitask Learning (MTL) is an inductive transfer mechanism whose principle goal is to improve generalization performance. MTL improves generalization by leveraging the domain-specific inf…
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key Words:有监督学习与无监督学习.分类.回归.密度预计.聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,Y). 有监督学习:最常见的是regression & classification. regression:Y是实数ve…
tensorflow集成和实现了各种机器学习基础的算法,可以直接调用. 代码集:https://github.com/ageron/handson-ml 监督学习 1)决策树(Decision Tree)和随机森林 决策树: 决策树是一种树形结构,为人们提供决策依据,决策树可以用来回答yes和no问题,它通过树形结构将各种情况组合都表示出来,每个分支表示一次选择(选择yes还是no),直到所有选择都进行完毕,最终给出正确答案. 决策树(decision tree)是一个树结构(可以是二叉树或非二…
计划最近好好按步骤按阶段系统性的学习下机器学习和深度学习,希望能坚持下去. 2019-01-05 基于TensorFlow的深度学习系列教程 2--常量Constant 2019-01-03 深度学习Tensorflow生产环境部署(下·模型部署篇) 2019-01-03 深度学习Tensorflow生产环境部署(上·环境准备篇) 2018-12-23 基于TensorFlow的深度学习系列教程 1--Hello World! 2018-12-22 想要接触人工智能吗?先要学会如何阅读论文 20…
from:http://blog.csdn.net/abcjennifer/article/details/7826917 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得. Key Words:有监督学习与无监督学习,分类.回归,密度估计.聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,…