三次样条插值matlab实现】的更多相关文章

三次样条插值matlab实现 %三次样条差值-matlab通用程序 - zhangxiaolu2015的专栏 - CSDN博客 https://blog.csdn.net/zhangxiaolu2015/article/details/42744823 %[图文]三次样条插值算法详解_百度文库 https://wenku.baidu.com/view/14423f2e1711cc7931b716ae.html与课堂使用PPT一致. clc clear x=input('请按照格式[x1,x2,x…
一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单函数P(x)(常是多项式),使其在插值基点xi,处成立P(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≍P(x). 二.实验原理 三.实验程序 四.实验内容 求之f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式. 五.实验程序    sym…
java 三次样条插值 画光滑曲线 例子 主要是做数值拟合,根据sin函数采点,取得数据后在java中插值并在swing中画出曲线,下面为截图  不光滑和光滑曲线前后对比:    代码: 执行类: package com.yang.logic; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.List; import com.yang.l…
什么是三次样条插值 插值(interpolation)是在已知部分数据节点(knots)的情况下,求解经过这些已知点的曲线, 然后根据得到的曲线进行未知位置点函数值预测的方法(未知点在上述已知点自变量范围内). 样条(spline)是软尺(elastic ruler)的术语说法,在技术制图中,使用软尺连接两个相邻数据点, 以达到连接曲线光滑的效果. 样条插值是一种分段多项式(piecewise polynomial)插值法.数学上,曲线光滑需要在曲线上处处一阶导连续, 因此,在节点处需要满足一阶…
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌套算法啊,见"Horner嵌套算法". 1. 单项式(Monomial)基插值 1)插值函数基 单项式基插值采用的函数基是最简单的单项式:$$\phi_j(t)=t^{j-1}, j=1,2,...n;\quad f(t)=p_{n-1}(t)=x_1+x_2t+x_3t^2+...x_n…
井眼轨迹数据的测量值是离散的,根据某些测斜公式,我们可以计算出离散的三维的井眼轨迹坐标,但是真实的井眼轨迹是一条平滑的曲线,这就需要我们对测斜数据进行插值,使井眼轨迹变得平滑,我暂时决定使用三次样条进行插值.(但是插值出来的点,并不是真实的测量值,并不能真实的反映经验轨迹的实际情况,仅供分析使用) 三次样条函数:(函数是在网上找到的,测试可用) ThreeSpline.h #pragma once class ThreeSpline { public: ThreeSpline(void); ~T…
1. 已知函数在下列各点的值为   0.2 0.4 0.6 0.8 1.0   0.98 0.92 0.81 0.64 0.38 用插值法对数据进行拟合,要求给出Lagrange插值多项式和Newton插值多项式的表达式,并计算插值多项式在点的值. 程序: x=[0.2 0.4 0.6 0.8 1.0]; y=[0.98 0.92 0.81 0.64 0.38]; x0=[0.2 0.28 0.44 0.76 1 1.08]; [f,f0]=Lagrange(x,y,x0) function […
已给sin0.32=0.314567,sin0.34=0.333487,sin0.36=0.352274,用线性插值及抛物插值计算sin0.3367的值并估计截断误差. 1. 线性插值 clc;clear; y=sin_L(0.32,0.314567,0.34,0.333487,0.3367); function y=sin_L(x0,y0,x1,y1,x) % sin_L输出sin(x)使用线性插值计算得到的函数值 % 例如: y=sin_L(0.32,0.314567,0.34,0.3334…
一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函数P(x)(常是多项式),使其在插值基点xi处成立(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≍P(x). 二.实验原理 三.实验内容 求f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式 四.实验程序    (1).m文件 %输入的量:X…
https://blog.csdn.net/left_la/article/details/6347373 感谢强大的google翻译. 我从中认识到了航位推算dead reckoning,立方体样条Cubic Splines 算法. 我单独查找了 Cubic Splines ,里面的原理简单说明: Cubic Splines 认为在 x 在[a, b]区间中,y对应是一条平滑的曲线,所以 y = f(x); 的一阶导函数和二阶导函数是平滑连续可导的. 拟定用三次方程,所以得出了一般的三次方程和…