自然语言处理:问答 + CNN 笔记】的更多相关文章

参考 Applying Deep Learning To Answer Selection: A Study And An Open Task follow: http://www.52nlp.cn/qa%E9%97%AE%E7%AD%94%E7%B3%BB%E7%BB%9F%E4%B8%AD%E7%9A%84%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%8A%80%E6%9C%AF%E5%AE%9E%E7%8E%B0 网络结构: Q&A共用一个网络,网络中包括…
1. 新手上路 自然语言处理(Natural Language Processing,NLP)是一门融合了计算机科学.人工智能及语言学的交叉学科,它们的关系如下图所示.这门学科研究的是如何通过机器学习等技术,让计算机学会处理人类语言,乃至实现终极目标--理解人类语言或人工智能. 美国计算机科学家Bill Manaris在<计算机进展>( Advances in Computers)第47卷的<从人机交互的角度看自然语言处理>一文中曾经给自然语言处理提出了如下的定义: "自…
自然语言处理的CNN模型中几种常见的池化方法 本文是在[1]的基础上进行的二次归纳. 0x00 池化(pooling)的作用   首先,回顾一下NLP中基本的CNN模型的卷积和池化的大致原理[2].filter(特征抽取器,卷积核,CV上称之为滤波器)在一个窗口(text region)上可以抽取出一个特征值,filter在整个text上滑动,将抽取出一系列特征值组成一个特征向量.这就是卷积层抽取文本特征的过程.模型中的每一个filter都如此操作,形成了不同的特征向量.   pooling层则…
本文转载自:https://blog.csdn.net/v_july_v/article/details/51812459 通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 1 前言 2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情.当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”. 本博客内写过一些机器学习相关的文章,但上一篇技术文章“LDA主题模型”还是写于2014年11月份,毕竟自…
CNN笔记:通俗理解卷积神经网络 2016年07月02日 22:14:50 v_JULY_v 阅读数 250368更多 分类专栏: 30.Machine L & Deep Learning 机器学习十大算法系列   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/v_JULY_v/article/details/51812459 通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 1…
2. 词典分词 中文分词:指的是将一段文本拆分为一系列单词的过程,这些单词顺序拼接后等于原文本. 中文分词算法大致分为基于词典规则与基于机器学习这两大派. 2.1 什么是词 在基于词典的中文分词中,词的定义要现实得多:词典中的字符串就是词. 词的性质--齐夫定律:一个单词的词频与它的词频排名成反比. 2.2 词典 互联网词库(SogouW, 15万个词条).清华大学开放中文词库(THUOCL).HanLP词库(千万级词条) 这里以HanLP附带的迷你核心词典为例(本项目路径):data/dict…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 3. 二元语法与中文分词 上一章中我们实现了块儿不准的词典分词,词典分词无法消歧.给定两种分词结果"商品 和服 务"以及"商品 和 服务",词典分词不知道哪种更加合理. 我们人类确知道第二种更加合理,只因为我们从小到大接触的都是第二种分词,出现的次数多,所以我们判定第二种是正确地选择.这就是利用了统计自然语言处理.统计自然语言处理的核心话题之一,就是…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 5. 感知机分类与序列标注 第4章我们利用隐马尔可夫模型实现了第一个基于序列标注的中文分词器,然而效果并不理想.事实上,隐马尔可夫模型假设人们说的话仅仅取决于一个隐藏的{B.M,E,S序列,这个假设太单纯了,不符合语言规律.语言不是由这么简单的标签序列生成,语言含有更多特征,而隐马弥可夫模型没有捕捉到.隐马弥可夫模型能捕捉的特征仅限于两种: 其一,前一个标签是什么:其二,当前字符…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 6. 条件随机场与序列标注 本章介绍一种新的序列标注模型条件随机场.这种模型与感知机同属结构化学习大家族,但性能比感知机还要强大.为了厘清该模型的来龙去脉,我们先对机器学习模型做番柿理.然后结合代码介绍条件随机场理论,探究它与结构化感知机的异同. 6.1 机器学习的模型谱系 机器学习的模型谱系图如下图所示: 根据建模的究竟是联合概率分布 P(x,y) 还是条件概率分布 P(y|x…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 9. 信息抽取 信息抽取是一个宽泛的概念,指的是从非结构化文本中提取结构化信息的一类技术.这类技术依然分为基于规则的正则匹配.有监督学习和无监督学习等各种实现方法.我们将使用一些简单实用的无监督学习方法.由于不需要标注语料库,所以可以利用海量的非结构化文本. 本章按照颗粒度从小到大的顺序,介绍抽取新词.关键词.关键短语和关键句的无监督学习方法. 9.1 新词提取 概述 新词是一个…