题意 给出一个有向图,其中每条边的边长都为1.求这个图中长度恰为 $k$ 的路劲的总数.($1 \leq n \leq 100, 1 \leq k\leq 10^9$) 分析 首先,$k=1$ 时答案就等于边数. 当 $k=2$,$G_2[i][j] = \sum_{w=1}^nG_1[i][w] \times G_1[w][j]$,相当于选取一个中间节点 $w$,只要存在合适的 $w$ ,$u,v$ 之间就存在通路. 以此类推,$G_k = G^k$ 表示恰好走 $k$ 步的情况,只需统计其中…