SGU 149 树形DP Computer Network】的更多相关文章

这道题搜了一晚上的题解,外加自己想了半个早上,终于想得很透彻了.于是打算好好写一写这题题解,而且这种做法比网上大多数题解要简单而且代码也比较简洁. 首先要把题读懂,把输入读懂,这实际上是一颗有向树.第i(2≤i≤n)行的两个数u,d,其中u是i的父亲结点,d是距离. 第一遍DFS我们可以计算出以u为根的子树中,距离u最远的结点的距离d(u, 0)以及次远的距离d(u, 1).而且,这两个不在u的同一棵子树中,如果u只有一个孩子,那么d(u, 1) = 0 第一遍DFS完以后,因为1是整棵树的跟,…
题目链接:  HDU 2196 Computer 分析:   先从任意一点开始, 求出它到其它点的最大距离, 然后以该点为中心更新它的邻点, 再用被更新的点去更新邻点......依此递推 ! 代码: #include <iostream> #include <cstdio> #include <cmath> #include <cstdlib> #include <string> #include <cstring> #include…
题目大意:给N个点,求每个点的与其他点距离最大值 很经典的树形dp...很久前就想写来着...看了陈老师的code才会的...mx[x][0], mx[x][1]分别表示x点子树里最长的2个距离, dfs一遍得到. mx[x][2]表示从x的父亲到x的最长路径长度, 也是dfs一遍得到(具体看代码).最后答案就是max(mx[x][0], mx[x][2]). 时间复杂度O(N) ----------------------------------------------------------…
令一个点的属性值为:去除这个点以及与这个点相连的所有边后得到的连通分量的节点数的最大值. 则树的重心定义为:一个点,这个点的属性值在所有点中是最小的. SGU 134 即要找出所有的重心,并且找出重心的属性值. 考虑用树形DP. dp[u]表示割去u点,得到的连通分支的节点数的最大值. tot[u]记录以u为根的这棵子树的节点数总和(包括根). 则用一次dfs即可预处理出这两个数组.再枚举每个点,每个点的属性值其实为max(dp[u],n-tot[u]),因为有可能最大的连通分支在u的父亲及以上…
Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 31049    Accepted Submission(s): 3929 Problem Description A school bought the first computer some time ago(so this computer's id is 1). D…
Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 38417    Accepted Submission(s): 6957 Problem Description A school bought the first computer some time ago(so this computer's id is 1). D…
B - Strategic game POJ - 1463   题目大意:给你一棵树,让你放最少的东西来覆盖所有的边   这个题目之前写过,就是一个简单的树形dp的板题,因为这个每一个节点都需要挺好处理的. 这个树形dp是从底往根部来递推,所以每一个点,都是由它的根节点来递推的. 如果一个根节点的子节点放了东西,那么这个根节点就可以有选择,但是如果没有放东西,那么这个根节点就必须放东西. E - Cell Phone Network POJ - 3659   题目大意:给你一棵树,让你用最小的东…
和LightOJ1257一样,之前我用了树分治写了.其实原来这题是道经典的树形DP,感觉这个DP不简单.. dp[0][u]表示以u为根的子树中的结点与u的最远距离 dp[1][u]表示以u为根的子树中的结点与u的次远距离 这两个可以一遍dfs通过儿子结点转移得到.显然dp[0][u]就是u的一个可能的答案,即u往下走的最远距离,还缺一部分就是u往上走的最远距离: dp[2][u]表示u往上走的最远距离 对于这个的转移,分两种情况,是这样的: dp[2][v] = max( dp[0][u]+w…
给出一棵树,边有权值,求出离每一个节点最远的点的距离 树形DP,经典题 本来这道题是无根树,可以随意选择root, 但是根据输入数据的方式,选择root=1明显可以方便很多. 我们先把边权转化为点权,放在数组cost中 令tree(i)表示以节点i为根的子树 对于节点i,离该节点最远的点要不就是在tree(i)中,要不就是在father(i)上面 令: dp[i][1] : 在子树tree(i)中,离i最远的距离 dp[i][2] : 在子树tree(i)中,离i第二远的距离 (递推的时候需要)…
题意:给定一棵n个节点的树,然后在给定m条边,去掉m条边中的一条和原树中的一条边,使得树至少分为两部分,问有多少种方案. 神题,一点也想不到做法, 首先要分析出加入一条边之后会形成环,形成环的话,如果去掉该边和环上面没有被其他环覆盖的边,那么便分为两部分了. 这样只需要记录每条边被环覆盖了几次即可, 用dp[u]表示u点的父边被覆盖了几次. 每次新加进来一条边(a,b) dp[a] ++ ,dp[b] ++ , dp[lca(a,b)] -= 2; 所有边处理完之后,遍历一边此树,同时转移状态…