LR采用的Sigmoid函数与最大熵(ME) 的关系 从ME到LR 先直接给出最大熵模型的一般形式,后面再给出具体的推导过程. \[\begin{align*} P_w(y|x) &= \dfrac{1}{Z_w(x)}\exp\left(\sum_{i=1}^{n}w_if_i(x,y)\right)\\ \mbox{where } Z_w(x) &= \sum_y\exp\left(\sum_{i=1}^nw_if_i(x,y)\right) \end{align*}\] 下面我们只考…
##Logstic回归采用sigmoid函数的原因(sigmoid函数能表示二项分布概率的原因) sigmoid函数: ![](http://images2017.cnblogs.com/blog/1330912/201802/1330912-20180206134900638-2098675329.jpg) 直觉上,采用sigmoid函数来模拟(0, 1)段函数是因为sigmoid函数接近(0, 1)分段函数且连续可导(即数学性质好). ###从分布的角度进行理解 **指数族分布**: ![]…
1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线).               其中z是一个线性组合,比如z可以等于:b + w1*x1 + w2*x2.通过代入很大的正数或很小的负数到g(z)函数中可知,其结果趋近于0或1 A logistic function or logistic curve is a common “S” shape (sigmoid curve). 也就是…
sigmoid 函数与 softmax 函数     1. sigmoid 函数       sigmoid 函数又称:logistic函数,逻辑斯谛函数.其几何形状即为一条sigmoid曲线. logistic的几何形状如下所示:     一个简单的Logistic函数可用下式表示: 逻辑斯谛回归(Logistic Regression,简称LR)作为一种对数线性模型(log-linear model)被广泛地应用于分类和回归场景中.此外,logistic函数也是神经网络最为常用的激活函数,即…
1.sigmoid函数 ​ sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: ​ 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 从指数函数到sigmoid ​ 首先我们来画出指数函数的基本图形: ​ 从上图,我们得到了这样的几个信息,指数函数过(0,1)点,单调递增/递减,定义域为(−∞,+∞),值域为(0,+∞),再来我们看一下sigmoid函数的图像: ​ ​ 如果直接把e−x放到分母上,就与ex图像一样了,所以分母加上…
交叉熵代价函数 machine learning算法中用得很多的交叉熵代价函数. 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为: 其中y是我们期望的输出,a为神经元的实际输出[ a=σ(z), where z=wx+b ]. 在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数: 然后更新w.b: w <—— w - η* ∂C/∂w = w - η *…
  先说一下,ML小白. 这是第一次写个人博客类似东西, 主要来说说看 sigmoid 函数,sigmoid函数是机器学习中的一个比较常用的函数,与之类似的还有softplus和softmax等函数,这里也就不说,先来看看sigmoid函数的表达式的和图像 sigmoid函数表达式如下   这就是sigmoid函数的表达式,这个函数在伯努利分布上非常好用,现在看看他的图像就清楚   可以看到在趋于正无穷或负无穷时,函数趋近平滑状态,sigmoid函数因为输出范围(0,1),所以二分类的概率常常用…
译自:http://willwolf.io/2017/04/19/deriving-the-softmax-from-first-principles/ 本文的原始目标是探索softmax函数与sigmoid函数的关系.事实上,两者的关系看起来已经是遥不可及:一个是分子中有指数!一个有求和!一个分母中有1!.当然,最重要的是两个的名称不一样. 推导一下,很快就可以意识到,两者的关系可以回溯到更为泛化的条件慨率原理的建模框架(back out into a more general modelin…
(手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如用于广告预测,也就是根据某广告被用户点击的可能性,把最可能被用户点击的广告摆在用户能看到的地方,结果是用户要么点击要么不点击. 通常两类使用类别标号0和1表示,0表示不发生,1表示发生. 问题引入 例如:有100个手机,其中有30个是你喜欢的,70个是不喜欢的.现预测你对第101个手机的喜好.这是一…
Sigmoid函数是一个S型函数. Sigmoid函数的数学公式为: 它是常微分方程 的一个解. Sigmoid函数具有如下基本性质: 定义域为 值域为, 为有界函数 函数在定义域内为连续和光滑函数 函数的导数为 不定积分为, 为常数 由于Sigmoid函数所具有的性质, 它常和单位阶跃函数用于构造人工神经网络; 另外心理学中的学习曲线的形状也和Sigmoid函数比较类似. …