R语言:as.Date出现NA值】的更多相关文章

> head(as.Date(data$日期,'%y%M%D'))[1] NA NA NA NA NA NA data日期格式如下: 解决办法: > head(as.Date(data$日期,'%y%m%d'))[1] "2017-06-01" "2017-06-01" "2017-06-01" "2017-06-01" "2017-06-01" "2017-06-01" f…
在使用R语言处理表格时(xlsx, csv),有时里面含有缺失值,或者不规范的数值,比如下图有许多的问号"?",为了便于处理数据,这些都应该整行地删掉. 为了删掉那些包含"?"的行,需要先找到那些行,方法如下,通过 which(逻辑表达式) 函数找到对应行标 > data<- read.csv('breast_cancer.csv'); > which(data$x6=="?") [1] 24 41 140 146 159 16…
基本数据类型 6种 numaric  如 12, 12.4 integer  如 2L,0L complex  包含实数和虚数 如 3+2i character  要用双引号或者单引号包括起来 如 "a","good" logical  如 TRUE,FALSE raw  是计算机能够直接识别的类型,是二进制的形式保存的数据 NULL  表示空值 NA  表示缺失值 高级数据类型 主要有6种 vector   向量 matrix   矩阵 array    数组 d…
写在前面:数据处理是数据分析与挖掘必不可少的步骤.下面列出一些常用的数据处理操作. 一.类型转换 用class()查看数据的类型,用as.类型名()进行类型转换. > num <- as.numeric(c(1,2,3,4,5,6))> num[1] 1 2 3 4 5 6> class(num)[1] "numeric"> char <- as.character(num)> char[1] "1" "2&quo…
这几个都是R语言中的特殊值,都是R的保留字, NA:Not available  表示缺失值   用 is.na() 来判断是否为缺失值 NULL:表示空值,即没有内容  用 is.null() 来判断是否为空值 NaN:Not a Number,表示非数值   用 is.nan() 来判断是否为非数值 Inf:Infinite 表示无穷大  用 is.finite()   is.infinite() 来判断是否为无穷大数…
有这么一个需求,知道栅格上的坐标,想看看这个坐标上的栅格值是多少.坐标长这个样子 那么这样的坐标下的栅格值该怎么看 cellFromXY(the.stack$t1,c( -1505000,6835000)) 此行代码获取了该坐标位置下该像元在该栅格数据中的编号,唯一编号,执行后得到结果468,那么这就说明该像元的唯一编号为468. extract(the.stack$t1,468) 改行代码得到位于468编号处的栅格值,执行后得到了结果为23,实际上该值确实是23,因此在R语言中可以使用此方法查…
更多大数据分析.建模等内容请关注公众号<bigdatamodeling> 在对变量分箱后,需要计算变量的重要性,IV是评估变量区分度或重要性的统计量之一,R语言计算IV值的代码如下: CalcIV <- function(df_bin, key_var, y_var){ N_0<-table(df_bin[, y_var])[1] N_1<-table(df_bin[, y_var])[2] iv_c<-NULL var_c<-NULL for (col in c…
Calinski-Harabasz准则有时称为方差比准则 (VRC),它可以用来确定聚类的最佳K值.Calinski Harabasz 指数定义为: 其中,K是聚类数,N是样本数,SSB是组与组之间的平方和误差,SSw是组内平方和误差.因此,如果SSw越小.SSB越大,那么聚类效果就会越好,即Calinsky criterion值越大,聚类效果越好. 1.下载permute.lattice.vegan包 install.packages(c("permute","lattic…
入门书籍:R语言实战 进度:1-4章 摘要: 1)实用的包 forecast:用于做时间序列预测的,有auto.arima函数 RODBC:可以用来读取excel文件.但据说R对csv格式适应更加良好,相应的导入导出均较为方便(read.table, write等) reshape:目前用到rename函数,可以方便的对数据变量重命名 fCalendar:在日期输入处提及,据说对日期运算有奇效,但无具体示例.同理如lubridate sqldf:在数据选取处提及,可代替subset以及各种whe…
本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx = x1 + x2, meanx = (x1 + x2)/2) 重编码 < 小于 <= 小于或等于 > 大于 >= 大于或等于 == 严格等于(比较浮点类型时慎用,易误判) != 不等于 !x 非x x | y x或y x & y x和y isTRUE(x) x是否为TRUE…
导言:     较早之前就听说R是一门便捷的数据分析工具,但由于课程设计的原因,一直没有空出足够时间来进行学习.最近自从决定本科毕业出来找工作之后,渐渐开始接触大数据行业的技术,现在觉得是时候把R拿下了:用了3天时间,除了对R先有一个大概认识之外,也着手敲指令.由于计算机专业的底子还不错,而且先后接触过不下10种编程语言,感觉R语言入门上手还是挺简单的.下面是自己汇总的一些简单入门代码供大家参考,感兴趣的朋友也可逐行敲打测试. 1. 介绍变量.顺序结构.分支结构.循环结构.函数使用.获取帮助等知…
#使用数据:UFO数据 #读入数据,该文件以制表符分隔,因此使用read.delim,参数sep设置分隔符为\t #所有的read函数都把string读成factor类型,这个类型用于表示分类变量,因此将stringsAsFactors设置为False #header=F表示文件中并没有表头 #na.string='',表示把空元素设置为R中的特殊值NA,即将所有空元素读成NA ufo<-read.delim('ufo_awesome.tsv',sep='\t',stringsAsFactors…
    R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容 DT = data.table(x=rep(c("b&…
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里主要介绍在基因组数据分析中可能会用到的函数. fread 做基因组数据分析时,常常需要读入处理大文件,这个时候我们就可以舍弃read.ta…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:异常值处理一般分为以下几个步骤:异常值检测.异常值筛选.异常值处理. 其中异常值检测的方法主要有:箱型图.简单统计量(比如观察极值) 异常值处理方法主要有:删除法.插补法.替换法. 提到异常值不得不说一个词:鲁棒性.就是不受异常值影响,一般是鲁棒性高的数据,比较优质. 一.异常值检验 异常值大概包括缺失值.离群值.重复值,数据不一致.…
R语言︱数据集分组 大型数据集通常是高度结构化的,结构使得我们可以按不同的方式分组,有时候我们需要关注单个组的数据片断,有时需要聚合不同组内的信息,并相互比较. 一.日期分组 1.关于时间的包都有很多很好的日期分组应用. 2.cut()函数 cut(x, n):将连续型变量x分割为有着n个水平的因子 cut(x, breaks, labels = NULL, include.lowest = FALSE, right = TRUE, dig.lab = 3, ordered_result = F…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言的基础包中提供了两种类型的时间数据,一类是Date日期数据,它不包括时间和时区信息,另一类是POSIXct/POSIXlt类型数据,其中包括了日期.时间和时区信息.基本总结如下: 日期data,存储的是天:时间POSIXct 存储的是秒,POSIXlt 打散,年月日不同:日期-时间=不可运算. 一般来讲,R语言中建立时序数据是通过字符型转…
在数据挖掘的过程中,数据预处理占到了整个过程的60% 脏数据:指一般不符合要求,以及不能直接进行相应分析的数据 脏数据包括:缺失值.异常值.不一致的值.重复数据及含有特殊符号(如#.¥.*)的数据 数据清洗:删除原始数据集中的无关数据.重复数据.平滑噪声数据.处理缺失值.异常值等 缺失值处理:删除记录.数据插补和不处理 主要用到VIM和mice包 install.packages(c("VIM","mice")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据:…
R语言  ggplot2包的学习   分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加…
1.获取数据 从 QQ 消息管理器中导出消息记录,保存的文本类型选择 txt 文件.这里获取的是某群从 2016-04-18 到 2016-05-07 期间的聊天记录,记录样本如下所示. 消息记录(此消息记录为文本格式,不支持重新导入) ================================================================ 消息分组:我的QQ群 =======================================================…
在R的官方教程里是这么给R下注解的:一个数据分析和图形显示的程序设计环境(A system for data analysis and visualization which is built based on S language.). R的源起 R是S语言的一种实现.S语言是由 AT&T贝尔实验室开发的一种用来进行数据探索.统计分析.作图的解释型语言.最初S语言的实现版本主要是S-PLUS.S-PLUS是一个商业 软件,它基于S语言,并由MathSoft公司的统计科学部进一步完善.后来Auc…
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语…
R是向量化的语言,最突出的特点是对向量的运算不需要显式编写循环语句,它会自动地应用于向量的每一个元素.对象是R中存储数据的数据结构,存储在内存中,通过名称或符号访问.对象的名称由大小写字母.数字0-9.点号和下划线组成,名称是区分大小写的,并且不能以数字开头,特殊的对象名称可以通过界定符 `` 来转为合法的对象名称,注意,点号( . ) 被视为没有特殊含义的单字符. R语言非常灵活,例如: R语言区分大小写,不管是变量名和函数名,都是大小写敏感的. 直接给变量赋值,R中不能显式声明变量和类型:…
dplyr包是Hadley Wickham的新作,主要用于数据清洗和整理,该包专注dataframe数据格式,从而大幅提高了数据处理速度,并且提供了与其它数据库的接口:tidyr包的作者是Hadley Wickham, 该包用于“tidy”你的数据,这个包常跟dplyr结合使用. dplyr.tidyr包安装及载入 install.packages("dplyr") install.packages("tidyr") library(dplyr) library(t…
R语言:R2OpenBUGS 用这个包调用BUGS model,分别用表格和图形概述inference和convergence,保存估计的结果 as.bugs.array 转换成bugs object 函数把马尔科夫链估计结果(不是来自于BUGS),转成BUGS object,主要用来plot.bugs 展示结果. as.bugs.array(sims.array, model.file=NULL, program=NULL, DIC=FALSE, DICOutput=NULL, n.iter=…
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就…
[R笔记]R语言函数总结   R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(…
  1. CSV文件的的读取与写出 2. 数据集筛选 3. 简单随机抽样 sample函数   正文: 1. CSV文件的的读取与写出 文件读取: df2 <- read.table("C:\\Users\\Lee\\Desktop\\R语言\\dummyData.csv", header= TRUE, sep=",") 文件写出:write.table(df1, "C:\\Users\\Lee\\Desktop\\R语言\\dummyData.cs…
本章内容: 操纵日期和缺失值 熟悉数据类型的转换 变量的创建和重编码 数据集的排序,合并与取子集 选入和丢弃变量 多说一句,数据预处理的时间是最长的……确实是这样的,额. 4.1一个示例 4.2创建新变量 算术运算符:+.-.*./.^(**)(求幂).x %% y(取余运算).x %/% y(整数除法). transform函数: transform函数现在只用于数据框.对数据框进行操作. 例子: mydata <- transform(mydata, sumx = x1+x2, meanx…
R语言分析朝阳医院数据 本次实践通过分析朝阳医院2016年销售数据,得出“月均消费次数”.“月均消费金额”.“客单价”.“消费趋势”等结果,并据此作出可视化图形. 一.读取数据: library(openxlsx) #1.读取目标数据 salesData <-read.xlsx("D:/test/朝阳医院2016年销售数据.xlsx,sheet=1") 二.对数据进行预处理: 1.列名重命名:打开excel表格发现列名都是中文名称,所以这里要对列名进行修改. names(sale…