MapReduce Combiner】的更多相关文章

Combiner编程(可选步骤,视情况而定!) combiner最基本是实现本地key的归并,combiner具有类似本地的reduce功能. 如果不用combiner,那么所有的结果都是reduce完成,效率会相对低下.使用combiner,先完成的map会在本地聚合,提升速度. 注意:Combiner的输出是Reducer的输入,Combiner绝不能改变最终的计算结果.所以Combiner只应该用于那种Reduce的输入key/value与输出key/value类型完全一致,且不影响最终结…
MapReduce 排序和序列化 简单介绍 ①序列化 (Serialization) 是指把结构化对象转化为字节流②反序列化 (Deserialization) 是序列化的逆过程. 把字节流转为结构化对象. 当要在进程间传递对象或持久化对象的时候, 就需要序列化对象成字节流, 反之当要将接收到或从磁盘读取的字节流转换为对象, 就要进行反序列化③Java 的序列化 (Serializable) 是一个重量级序列化框架, 一个对象被序列化后, 会附带很多额外的信息 (各种校验信息, header,…
目录 2 MapReduce工作流程 3 Shuffle机制(重点) 3.1 Shuffle机制 3.2 Partition分区 默认Partitioner分区 自定义Partitioner分区 自定义Partition分区案例 需求 需求分析 案例实现 输出结果 总结 3.3 WritableComparable排序 概述 自定义排序WritableComparable原理分析 1.WritableComparable 排序案例实操(全排序) 需求 需求分析 代码实现 输出结果 2.二次排序…
1.Map端的Combiner. 通过单词计数WordCountApp.java的例子,如何在Map端设置Combiner... 只附录部分代码: /** * 以文本 * hello you * hello me * 为例子. * map方法调用了两次,因为有两行 * k2 v2 键值对的数量有几个? * 有4个.有四个单词. * * 会产生几个分组? * 产生3个分组. * 有3个不同的单词. * */ public class WordCountApp { public static voi…
(总感觉上一篇的实现有问题)http://www.cnblogs.com/i80386/p/3444726.html combiner是把同一个机器上的多个map的结果先聚合一次现重新实现一个: 思路:第一个mapreduce仅仅做 <word_docid,count>的统计,即某个单词在某一篇文章里出现的次数.(原理跟wordcount一样,只是word变成了word_docid)第二个mapreduce将word_docid在map阶段拆开,重新组合为<word,docid_coun…
1 思路:0.txt MapReduce is simple1.txt MapReduce is powerfull is simple2.txt Hello MapReduce bye MapReduce 1 map函数:context.write(word:docid, 1) 即将word:docid作为map函数的输出输出key 输出valueMapReduce:0.txt 1is:0.txt 1simple:0.txt 1Mapreduce:1.txt 1is:1.txt 1powerf…
package com.bank.service; import java.io.IOException; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWrita…
前言 前面的一篇给大家写了一些MapReduce的一些程序,像去重.词频统计.统计分数.共现次数等.这一篇给大家介绍的是关于Combiner优化操作. 一.Combiner概述 1.1.为什么需要Combiner 我们map任务处理的结果是存放在运行map任务的节点上. map处理的数据的结果在进入reduce的时候,reduce会通过远程的方式去获取数据. 在map处理完数据之后,数据量特别大的话.reduce再去处理数据它就要通过网络去获取很多的数据. 这样会导致一个问题是:大量的数据会对网…
combiner相当于是一个本地的reduce,它的存在是为了减少网络的负担,在本地先进行一次计算再叫计算结果提交给reduce进行二次处理. 现在的流程为: 对于combiner我们有这些理解: Mapper代码展示: package com.nenu.mprd.test; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable;…
一.MR排序的分类 1.部分排序:MR会根据自己输出记录的KV对数据进行排序,保证输出到每一个文件内存都是经过排序的: 2.全局排序: 3.辅助排序:再第一次排序后经过分区再排序一次: 4.二次排序:经过一次排序后又根据业务逻辑再次进行排序. 二.MR排序的接口——WritableComparable 该接口继承了Hadoop的Writable接口和Java的Comparable接口,实现该接口要重写write.readFields.compareTo三个方法. 三.流量统计案例的排序与分区 /…