1) MapReduce:是一种离线计算框架,将一个算法抽象成Map和Reduce两个阶段进行 处理,非常适合数据密集型计算. 2) Spark:MapReduce计算框架不适合迭代计算和交互式计算,MapReduce是一种磁盘 计算框架,而Spark则是一种内存计算框架,它将数据尽可能放到内存中以提高迭代 应用和交互式应用的计算效率. 3) Storm:MapReduce也不适合进行流式计算.实时分析,比如广告点击计算等,而 Storm则更擅长这种计算.它在实时性要远远好于MapReduce计…
转自:http://www.sohu.com/a/142553677_804130 引言 随着大数据时代的来临,大数据产品层出不穷.我们最近也对一款业内非常火的大数据产品 - Apache Flink做了调研,今天与大家分享一下.Apache Flink(以下简称flink) 是一个旨在提供‘一站式’ 的分布式开源数据处理框架.是不是听起来很像spark?没错,两者都希望提供一个统一功能的计算平台给用户.虽然目标非常类似,但是flink在实现上和spark存在着很大的区别,flink是一个面向流…
Hadoop的高吞吐,海量数据处理的能力使得人们可以方便地处理海量数据.但是,Hadoop的缺点也和它的优点同样鲜明——延迟大,响应缓慢,运维复杂. 有需求也就有创造,在Hadoop基本奠定了大数据霸主地位的时候,很多的开源项目都是以弥补Hadoop的实时性为目标而被创造出来.而在这个节骨眼上Storm横空出世了. Storm带着流式计算的标签华丽丽滴出场了,看看它的一些卖点: 分布式系统:可横向拓展,现在的项目不带个分布式特性都不好意思开源. 运维简单:Storm的部署的确简单.虽然没有Mon…
Hadoop的高吞吐,海量数据处理的能力使得人们可以方便地处理海量数据.但是,Hadoop的缺点也和它的优点同样鲜明——延迟大,响应缓慢,运维复杂. 有需求也就有创造,在Hadoop基本奠定了大数据霸主地位的时候,很多的开源项目都是以弥补Hadoop的实时性为目标而被创造出来.而在这个节骨眼上Storm横空出世了. Storm带着流式计算的标签华丽丽滴出场了,看看它的一些卖点: 分布式系统:可横向拓展,现在的项目不带个分布式特性都不好意思开源. 运维简单:Storm的部署的确简单.虽然没有Mon…
Shuffle本意是 混洗, 洗牌的意思, 在MapReduce过程中需要各节点上同一类数据汇集到某一节点进行计算,把这些分布在不同节点的数据按照一定的规则聚集到一起的过程成为Shuffle. 在Hadoop的MapReduce框架中, Shuffle是连接Map和Reduce之间的桥梁, Map的数据要用到Reduce中必须经过Shuffle这个环节. 由于Shuffle涉及到磁盘的读写和网络的传输, 所以Shuffle的性能高低直接影响到整个程序的性能和吞吐量. MapReduce中的Shu…
按此文章<Hadoop集群(第7期)_Eclipse开发环境设置>进行MapReduce开发环境搭建的过程中遇到一些问题,饶了一些弯路,解决办法记录在此: 文档目的: 记录windows环境下Eclipse开发MapReduce程序遇到的四个问题及解决办法: 问题一:程序运行时报JobTracker is in safe mode: security.UserGroupInformation: PriviledgedActionException as:hadoop cause:org.apa…
著名的 C10K 问题提出的时候, 正是 2001 年.这篇文章可以说是高性能服务器开发的一个标志性文档,它讨论的就是单机为1万个连接提供服务这个问题,当时因为硬件和软件的**,单机1万还是一个非常值得挑战的目标.但是时光荏苒,随着硬件和软件的飞速发展,单机1万的目标已经变成了最简单不过的事情.现在用任何一种主流语言都能提供单机1万的并发处理的能力.所以现在目标早已提高了100倍,变成C1000k,也就是一台服务器为100万连接提供服务.在2010年,2011年已经看到一些实现C1000K的文章…
原文地址:http://colobu.com/2015/05/22/implement-C1000K-servers-by-spray-netty-undertow-and-node-js/#Netty服务器 目录 [−] 服务器的参数调优 TCP/IP参数配置 最大文件描述符 应用运行时调优 OutOfMemory Killer 客户端的参数调优 服务器测试 Netty服务器 Spray服务器 Undertow node.js 参考文档 事实上,最近我又增加了几个框架,现在包括 Netty,…
背景 mr引擎在hive 2中将被弃用.官方推荐使用tez或spark等引擎. 选择 tez 使用有向无环图.内存式计算. spark 可以同时作为批式和流式的处理引擎,减少学习成本. 问题&&不便 tez: 在hive sql中使用了union 或 join操作 tez会将任务切分,每个小任务,创建一个文件文件夹,如下: 这就会造成一个非常严重的问题,假如这张表的下文,使用这张表没有用tez,而是使用spark或者mr, 这两种引擎是不会遍历子文件夹下的内容的.查出来的数据为0.而我们很…
Spark是一个开源的通用并行分布式计算框架,由加州大学伯克利分校的AMP实验室开发,支持内存计算.多迭代批量处理.即席查询.流处理和图计算等多种范式.Spark内存计算框架适合各种迭代算法和交互式数据分析,能够提升大数据处理的实时性和准确性,现已逐渐获得很多企业的支持,如阿里巴巴.百度.网易.英特尔等公司. 针对以下几个问题来深入的学习 1.   Spark VSHadoop有哪些异同点? Hadoop:分布式批处理计算,强调批处理,常用于数据挖掘.分析        Spark:是一个基于内…