spark教程(一)-集群搭建】的更多相关文章

spark 简介 建议先阅读我的博客 大数据基础架构 spark 一个通用的计算引擎,专门为大规模数据处理而设计,与 mapreduce 类似,不同的是,mapreduce 把中间结果 写入 hdfs,而 spark 直接写入 内存,这使得它能够实现实时计算. spark 由 scala 语言开发,他能够和 scala 完美结合,同时实现了 java.python.R 等接口. 搭建模式 spark 有 3 种搭建模式 local 模式:即单机模式,这种安装加压即可,具体安装方法穿插在 Stan…
Spark高可用集群搭建 node1    node2    node3   1.node1修改spark-env.sh,注释掉hadoop(就不用开启Hadoop集群了),添加如下语句 export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=node1:2181,node2:2181,node3:2181 -Dspark.deploy.zookeeper.…
在前面的Spark发展历程和基本概念中介绍了Spark的一些基本概念,熟悉了这些基本概念对于集群的搭建是很有必要的.我们可以了解到每个参数配置的作用是什么.这里将详细介绍Spark集群搭建以及xml参数配置.Spark的集群搭建分为分布式与伪分布式,分布式主要是与hadoop Yarn集群配合使用,伪分布式主要是单独使用作为测试. Spark完全分布式搭建 由于Hadoop和Spark集群占用的内存较高,这种完全分布式集群的搭建对于跑应用来说太吃力,如果有服务器可以尝试,这里采用虚拟机方式实验,…
最近学习Spark,因此想把相关内容记录下来,方便他人参考,也方便自己回忆吧 spark开发环境的介绍资料很多,大同小异,很多不能一次配置成功,我以自己的实际操作过程为准,详细记录下来. 1.基本运行环境 spark的运行需要java和scala的支持,因此首先需要配置java.scala运行环境,网上资料很多,也很简单 详细内容参见上一篇博客(http://blog.csdn.net/hit0803107/article/details/52794875) 我使用的是jdk1.8.0_91,s…
一.集群规划 这里搭建一个3节点的Spark集群,其中三台主机上均部署Worker服务.同时为了保证高可用,除了在hadoop001上部署主Master服务外,还在hadoop002和hadoop003上分别部署备用的Master服务,Master服务由Zookeeper集群进行协调管理,如果主Master不可用,则备用Master会成为新的主Master. 二.前置条件 搭建Spark集群前,需要保证JDK环境.Zookeeper集群和Hadoop集群已经搭建,相关步骤可以参阅: Linux环…
软件环境: linux系统: CentOS6.7 Hadoop版本: 2.6.5 zookeeper版本: 3.4.8 主机配置: 一共m1, m2, m3这五部机, 每部主机的用户名都为centos 192.168.179.201: m1 192.168.179.202: m2 192.168.179.203: m3 m1: Zookeeper, Namenode, DataNode, ResourceManager, NodeManager, Master, Worker m2: Zooke…
文中的所有操作都是在之前的文章spark集群的搭建基础上建立的,重复操作已经简写: 之前的配置中使用了master01.slave01.slave02.slave03: 本篇文章还要添加master02和CloudDeskTop两个节点,并配置好运行环境: 一.流程: 1.在搭建高可用集群之前需要先配置高可用,首先在master01上: [hadoop@master01 ~]$ cd /software/spark-2.1.1/conf/ [hadoop@master01 conf]$ vi s…
一.环境准备 1. 机器: 3 台虚拟机 机器 角色  l-qta3.sp.beta.cn0 NameNode,ResourceManager,spark的master l-querydiff1.sp.beta.cn0 DataNode,NodeManager,Worker l-bgautotest2.sp.beta.cn0 DataNode,NodeManager,Worker 2. jdk版本 [xx@l-qta3.sp.beta.cn0 ~]$ java -versionjava vers…
简介 Spark是一个针对于大规模数据处理的统一分析引擎.其处理速度比MapReduce快很多.其特征有: 1.速度快 spark比mapreduce在内存中快100x,比mapreduce在磁盘中快10x spark比mapreduce快的主要2个原因: 1)spark的job中间结果数据可以保存在内存中,mapreduce的job中间结果数据只能够保存在磁盘.后面又有其他的job需要依赖于前面job的输出结果,对于spark来说,直接可以从内存获取得到, 大大减少磁盘io操作,对于mapre…
一.前言 -- 基础环境准备 节点名称 IP NN DN JNN ZKFC ZK RM NM Master Worker master1 192.168.8.106 * * * * * * master2 192.168.8.236 * * * * * * worker1 192.168.8.107 * * * * * worker2 192.168.8.108 * * * worker3 192.168.8.109 * * * worker4 192.168.8.110 * * * worke…