DB 分库分表的基本思想和切分策略 一.基本思想 Sharding的基本思想就要把一个数据库切分成多个部分放到不同的数据库(server)上,从而缓解单一数据库的性能问题.不太严格的讲,对于海量数据的数据库,如果是因为表多而数据多,这时候适合使用垂直切分,即把关系紧密(比如同一模块)的表切分出来放在一个server上.如果表并不多,但每张表的数据非常多,这时候适合水平切分,即把表的数据按某种规则(比如按ID散列)切分到多个数据库(server)上.当然,现实中更多是这两种情况混杂在一起,这时候需…
作为一种数据存储层面上的水平伸缩解决方案,数据库Sharding技术由来已久,很多海量数据系统在其发展演进的历程中都曾经历过分库分表的Sharding改造阶段.简单地说,Sharding就是将原来单一数据库按照一定的规则进行切分,把数据分散到多台物理机(我们称之为Shard)上存储,从而突破单机限制,使系统能以Scale-Out的方式应对不断上涨的海量数据,但是这种切分对上层应用来说是透明的,多个物理上分布的数据库在逻辑上依然是一个库.实现Sharding需要解决一系列关键的技术问题,这些问题主…
DB 分库分表(2):全局主键生成策略 本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案.关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:DB 分库分表(1):拆分实施策略和示例演示 第一部分:一些常见的主键生成策略   一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制.一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的:另一方面,应用程序在插入数据之前需要先获得ID,以便进行…
DB 分库分表(1):拆分实施策略和示例演示 第一部分:实施策略 1.准备阶段 对数据库进行分库分表(Sharding化)前,需要开发人员充分了解系统业务逻辑和数据库schema.一个好的建议是绘制一张数据库ER图或领域模型图,以这类图为基础划分shard,直观易行,可以确保开发人员始终保持清醒思路.对于是选择数据库ER图还是领域模型图要根据项目自身情况进行选择.如果项目使用数据驱动的开发方式,团队以数据库ER图作为业务交流的基础,则自然会选择数据库ER图,如果项目使用的是领域驱动的开发方式,并…
系统经sharding改造之后,原来单一的数据库会演变成多个数据库,如何确保多数据源同时操作的原子性和一致性是不得不考虑的一个问题.总体上看,目前对于一个分布式系统的事务处理有三种方式:分布式事务.基于Best Efforts 1PC模式的事务以及事务补偿机制.我们下面对这三种处理方式一一进行分析. 分布式事务 这是最为人们所熟知的多数据源事务处理机制.本文并不打算对分布式事务做过多介绍,读者可参考此文:关于分布式事务.两阶段提交.一阶段提交.Best Efforts 1PC模式和事务补偿机制的…
当团队对系统业务和数据库进行了细致的梳理,确定了切分方案后,接下来的问题就是如何去实现切分方案了,目前在sharding方面有不少的开源框架和产品可供参考,同时很多团队也会选择自主开发实现,而不管是选择框架还是自主开发,都会面临一个在哪一层上实现sharding逻辑的问题,本文会对这一系列的问题逐一进行分析和考量. 一.sharding逻辑的实现层面 从一个系统的程序架构层面来看,sharding逻辑可以在DAO层.JDBC API层.介于DAO与JDBC之间的Spring数据访问封装层(各种s…
前言 说实话,这章本来不打算讲的,因为配置多数据源的网上有很多类似的教程.但是最近因为项目要用到分库分表,所以让我研究一下看怎么实现.我想着上一篇博客讲了多环境的配置,不同的环境调用不同的数据库,那接下来就将一个环境用到多个库也就讲了.所以才有了这篇文章. 我们先来看一下今天项目的项目结构,在上篇博客的基础上进行了一定的增改,主要是增加了一个 config 文件,在dao 中分了两个子包mapper1 和mapper2 将原先的UserMapper 移入到了 mapper1 中.好了,开始正文…
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 什么?Java 面试就像造火箭 单纯了! 以前我也一直想 Java 面试就好好面试呗,嘎哈么总考一些工作中也用不到的玩意,会用 Spring.MyBatis.Dubbo.MQ,把业务需求实现了不就行了! 但当工作几年后,需要提升自己(要加钱)的时候,竟然开始觉得自己只是一个调用 API 攒接口的工具人.没有知识宽度,没有技术纵深,也想不出来更没有意识,把日常开发的业务代码中通用的共…
多个数据库 配置: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), }, 'db2': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), }, } 写入到 指定数据库 python manage.…
一.分库分表的背景 在数据爆炸的年代,单表数据达到千万级别,甚至过亿的量,都是很常见的情景.这时候再对数据库进行操作就是非常吃力的事情了,select个半天都出不来数据,这时候业务已经难以维系.不得已,分库分表提上日程,我们的目的很简单,减小数据库的压力,缩短表的操作时间. 二.如何进行数据切分 数据切分(Sharding),简单的来说,就是通过某种特定的条件,将存放在同一个数据库中的数据拆分存放到多个数据库(主机)中,从而达到分散单台机器负载的情况,即分库分表.根据数据切分规则的不同,主要有两…