tf.nn.rnn_cell.MultiRNNCell】的更多相关文章

Class tf.contrib.rnn.MultiRNNCell 新版 Class tf.nn.rnn_cell.MultiRNNCell 构建多隐层神经网络 __init__(cells, state_is_tuple=True) cells:rnn cell 的list state_is_tuple:true,状态Ct和ht就是分开记录,放在一个tuple中,接受和返回的states是n-tuples,其中n=len(cells),False,states是concatenated沿着列轴…
tf.nn.dynamic_rnn(cell,inputs,sequence_length=None, initial_state=None,dtype=None, parallel_iterations=None,swap_memory=False, time_major=False, scope=None) tf.nn.dynamic_rnn的作用: 对于单个 RNNCell ,使用call 函数进行运算时,只在序列时间上前进了一步 ,如使用 x1. ho 得到此h1,通过 x2 .h1 得…
一.tf.nn.dynamic_rnn :函数使用和输出 官网:https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn 使用说明: Args: cell: An instance of RNNCell. //自己定义的cell 内容:BasicLSTMCell,BasicRNNCell,GRUCell 等,,, inputs: If time_major == False (default), this must be a Ten…
问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse)  # 构建单层的LSTM网络 参数说明:num_hidden表示隐藏层的个数,reuse表示LSTM的参数进行复用 2.rnn.DropoutWrapper(cell, output_keep_prob=keep_prob) # 表示对rnn的输出层进行dropout 参数说明:cell表示单层的lstm,o…
tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别 https://blog.csdn.net/u014365862/article/details/78238807 MachineLP的Github(欢迎follow):https://github.com/MachineLP 我的GitHub:https://github.com/MachineLP/train_cnn-rnn-attention 自己搭建的一个框架,包含模型有:vgg(vgg16,vg…
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关…
tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np params=np.random.normal(loc=0.0,scale=1.0,size=[10,10]) ids=[1,2,3] with tf.Session() as sess: print(s…
这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73743849),但我觉得直觉上的经验更有用,如下: 直觉上的经验: 一件确定的事: padding 无论取 'SAME' 还是取 'VALID', 它在 conv2d 和 max_pool 上的表现是一致的; padding = 'SAME' 时,输出并不一定和原图size一致,但会保证覆盖原图所有…
1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`, `complex64`, `complex128`, `string`. y: A `Tensor`. Must have the same type as `x`.…
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关的一共五个参数: 第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, i…