https://blog.csdn.net/qq_33445835/article/details/80143598  目前想做一个关于2D转3D的项目,由于国内资料比较少而且大部分都是基于国外的研究资料优化而来,所以想翻译翻译国外的论文,强化自己的理解,同时方便他人,英文水平有限,尽量做到“信达雅”的信,争取下达,如有错误,希望大家指正.文末提供论文原文PDF下载.以下为正文. 快速2D到3D转换 摘要 从现有2D图像到3D的转换已经被证明了是商业上可行的,并且满足了日益增长的对高质量立体影像…
https://blog.csdn.net/qq_33445835/article/details/80143598  目前想做一个关于2D转3D的项目,由于国内资料比较少而且大部分都是基于国外的研究资料优化而来,所以想翻译翻译国外的论文,强化自己的理解,同时方便他人,英文水平有限,尽量做到“信达雅”的信,争取下达,如有错误,希望大家指正.文末提供论文原文PDF下载.以下为正文. 快速2D到3D转换 摘要 从现有2D图像到3D的转换已经被证明了是商业上可行的,并且满足了日益增长的对高质量立体影像…
引言 传统的3D卷积神经网络(CNN)计算成本高,内存密集,容易过度拟合,最重要的是,需要改进其特征学习能力.为了解决这些问题,我们提出了整流局部相位体积(ReLPV)模块,它是标准3D卷积层的有效替代方案.所述ReLPV 块提取相在3D局部邻域(例如,\(3×3×3\))输入图的每个位置以获得特征图.通过在每个位置的3D局部邻域中的多个固定低频点处计算3D短期傅里叶变换(STFT)来提取相位.然后,在通过激活函数之后,在不同频率点处的这些特征图被线性组合.所述ReLPV块提供至少,显著参数节约…
Faster R-CNN论文翻译   Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什么想法?就是把那个一直明明应该换掉却一直被几位大神挤牙膏般地拖着不换的选择性搜索算法,即区域推荐算法.在Fast R-CNN的基础上将区域推荐换成了神经网络,而且这个神经网络和Fast R-CNN的卷积网络一起复用,大大缩短了计算时间.同时mAP又上了一个台阶,我早就说过了,他们一定是在挤牙膏. F…
物体检测论文翻译系列: 建议从前往后看,这些论文之间具有明显的延续性和递进性. R-CNN SPP-net Fast R-CNN Faster R-CNN Faster R-CNN论文翻译   原文地址 Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什么想法?就是把那个一直明明应该换掉却一直被几位大神挤牙膏般地拖着不换的选择性搜索算法,即区域推荐算法.在Fast R-CNN的基础上将…
目录 广义交并比-GIOU(回归检测的一种指标和Loss) 注释 1. 摘要 2. 介绍 3. 相关工作 4. 广义交并比 5. GIOU作为目标检测的LOSS 6. 实验结果 7. 个人理解 单词汇总 广义交并比-GIOU(回归检测的一种指标和Loss) 注释 本系列<论文翻译>仅代表个人观点 目的提高英文阅读能力 错误之处较多,欢迎读者修正,在此感谢 1. 摘要   目标检测的评价指标最常使用的是交并比进行度量.然而在优化(经常使用距离参数对边界框进行回归)和最大化(最大化这个度量参数)之…
MOTS:多目标跟踪和分割论文翻译 摘要: 本文将目前流行的多目标跟踪技术扩展到多目标跟踪与分割技术(MOTS).为了实现这个目标,我们使用半自动化的标注为两个现有的跟踪数据集创建了密集的像素级标注.我们的新标注包含了10870个视频帧中977个不同对象(汽车和行人)的65,213个像素掩膜.为了进行评估,我们将现有的多目标跟踪指标扩展到这个任务.同时,我们还提出了一种新的基线方法,该方法通过单个神经网络解决检测,跟踪和分割问题.我们通过在MOTS标注(MOTS annotations)上面训练…
本文为 Mesh R-CNN 论文翻译(原理部分)的后续.Mesh R-CNN 原论文. 4 实验   我们在ShapeNet上对网格预测分支进行基准测试,并与最先进的方法相比较.然后,我们在野生的有挑战性的Pix3D数据集评估我们的完整Mesh R-CNN的三维形状预测任务. 4.1 ShapeNet   ShapeNet[4]提供了一组三维形状,这些形状以纹理化的CAD模型表示,这些模型根据WordNet[42]组织成语义类别,并被广泛用作三维形状预测的基准.我们使用ShapeNetCore…
论文标题:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 标题翻译:OverFeat:使用卷积神经网络集成识别,定位和检测 论文作者:Pierre Sermanet  David Eigen  Xiang Zhang  Michael Mathieu  Rob Fergus  Yann LeCun 论文地址:https://arxiv.org/pdf/1312.62…
论文标题:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 标题翻译:基于区域提议(Region  Proposal)网络的实时目标检测 论文作者:Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun 论文地址:https://arxiv.org/abs/1506.01497 Faster RCNN 的GitHub地址:https://gith…