XGBoost介绍】的更多相关文章

Xgboost为一个十分有效的机器学习模型,在各种竞赛中均可以看到它的身影,同时Xgboost在工业届也有着广泛的应用,本文以Titanic数据集为研究对象,简单地探究Xgboost模型建模过程,同时对数据清理以及特征工程的内容作简单的介绍,以此作为Xgboost模型的学习笔记,错误和不足之处还请各位看官指出. 数据集 本文数据集源自于竞赛Titanic: Machine Learning from Disaster,竞赛中我们要求根据数据集提供的乘客编号.姓名性别等信息,运用机器学习模型预测船…
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:张萌 序言 XGBoost效率很高,在Kaggle等诸多比赛中使用广泛,并且取得了不少好成绩.为了让公司的算法工程师,可以更加方便的使用XGBoost,我们将XGBoost更好地与公司已有的存储资源和计算平台进行集成,将数据预处理.模型训练.模型预测.模型评估及可视化.模型收藏及分享等功能,在Tesla平台中形成闭环,同时,数据的流转实现了与TDW完全打通,让整个机器学习的流程一体化. XGBoost介绍 XGBoost的全称为…
白话GBDT: https://blog.csdn.net/qq_26598445/article/details/80853873 优点: 预测精度高 适合低维数据 能处理非线性数据,该版本GBDT几乎可用于所有回归问题(线性/非线性),相对logistic regression仅能用于线性回归,GBDT的适用面非常广. 可以灵活处理各种类型的数据,包括连续值和离散值. 在相对少的调参时间情况下,预测的准确率也可以比较高.这个是相对SVM来说的. 使用一些健壮的损失函数,对异常值的鲁棒性非常强…
https://docs.google.com/presentation/d/e/2PACX-1vQGlXP6QZH0ATzXYwnrXinJcCn00fxCOoEczPAXU-n3hAPLUfMfie7CwW4Vk4owYPiNh6g4uc9dx757/pub?start=false&loop=false&delayms=3000&slide=id.g3149e75136_0_130 Pandas 处理 dummy variable p-value:拒绝原假设H0时犯错误的概率,…
xgboost的出现,让数据民工们告别了传统的机器学习算法们:RF.GBM.SVM.LASSO.........现在,微软推出了一个新的boosting框架,想要挑战xgboost的江湖地位.笔者尝试了一下,下面请看来自第一线的报告. 包含以下几个部分: 一. 基本介绍 二.  XGBOOST原理及缺点 三. LightGBM的优化 四. 建模过程(python) 五. 调参 一. 基本介绍 LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树.它可以说是分布式的,高效…
L2R最常用的包就是XGBoost 和LightGBM,xgboost因为其性能及快速处理能力,在机器学习比赛中成为常用的开源工具包, 2016年微软开源了旗下的lightgbm(插句题外话:微软的人真是够谦虚的,开源的包都是light前缀,公司更是micro),对标xgboost,在结果相差不大的前提下,显著缩短了训练时间. 先占个坑,等有空展开写写. 下面分别介绍下两者: 一.XGBoost 1.git地址:https://github.com/dmlc/xgboost   参数说明:htt…
XGBoost原理介绍 1. 什么是XGBoost XGBoost是一个开源机器学习项目,实现了GBDT算法,进行了算法和工程上的许多改进,广泛应用在Kaggle竞赛及许多机器学习竞赛中. 说到XGBoost,不得不提GBDT(Gradient Boosting Decision Tree).XGBoost本质上还是一个GBDT,力争把速度和效率发挥到极致,所以叫X (Extreme) GBoosted.两者都是boosting方法. 1.1 XGBoost树的定义 举个例子,要预测一家人对电子…
摘要: 1.所需工具 2.详细过程 3.验证 4.使用指南 5.参数调优 内容: 1.所需工具 我用到了git(内含git bash),Visual Studio 2012(10及以上就可以),xgboost源码(0.4版本),java 环境还需要maven 附:Visual Studio 2012下载 xgboost源码(0.4版本)链接:http://pan.baidu.com/s/1i4Kem5B 密码:ieox 2.详细过程 在windows文件里面打开sln文件 , 选release…
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些基学习器(一般倾向于强大而复杂的模型比如完全生长的决策树),然后综合他们的预测结果,通常集成模型的效果会优于基学习器,因为模型的方差有所降低. 常见变体(按照样本采样方式的不同划分) Pasting:直接从样本集里随机抽取的到训练样本子集 Bagging:自助采样(有放回的抽样)得到训练子集 Random…