题目原文 Selection in two sorted arrays. Given two sorted arrays a[] and b[], of sizes n1 and n2, respectively, design an algorithm to find the kth largest key. The order  of growth of the worst case running time of your algorithm should be logn, where n…
转自 http://blog.csdn.net/zxzxy1988/article/details/8587244 给定两个已经排序好的数组(可能为空),找到两者所有元素中第k大的元素.另外一种更加具体的形式是,找到所有元素的中位数.本篇文章我们只讨论更加一般性的问题:如何找到两个数组中第k大的元素?不过,测试是用的两个数组的中位数的题目,Leetcode第4题 Median of Two Sorted Arrays方案1:假设两个数组总共有n个元素,那么显然我们有用O(n)时间和O(n)空间的…
http://blog.csdn.net/realxie/article/details/8078043 假设有长度分为为M和N的两个升序数组A和B,在A和B两个数组中查找第K大的数,即将A和B按升序合并后的第K个数. 解法一: 使用两个指针指向A和B的开头,很容易在O(M+N)的时间内完成,此算法略过. 解法二: 使用二分的方法.算法思想在代码注释中 #include <iostream> #include <string.h> #include <stdlib.h>…
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). 这道题让我们求两个有序数组的中位数,而且限制了时间复杂度为O(log (m+n)),看到这个时间复杂度,自然而然的想到了应该使用二分查找法来求解.但是这道题…
一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/leetcode) 题意非常简单,给定两个有序的数组,求中位数,难度系数给的是 Hard,希望的复杂度是 log 级别.回顾下中位数,对于一个有序数组,如果数组长度是奇数,那么中位数就是中间那个值,如果长度是偶数,就是中间两个数的平均数. O(nlogn) 最容易想到的解法是 O(nlogn) 的解…
题目链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/ 题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 不会同时为空. 示例: 示例 1: nums1 = [1, 3] nums2 = [2] 则中位数是 2.0 示例 2: nums1 = [1, 2] n…
4. 寻找两个有序数组的中位数 很明显我偷了懒, 没有给出正确的算法,因为官方的解法需要时间仔细看一下... func findMedianSortedArrays(nums1 []int, nums2 []int) float64 { // 追加 -> 排序 -> 求中值 nums1 = append(nums1, nums2...) if len(nums1) == 0 { return 0.0 } // 排序 sort.Ints(nums1) //fmt.Println(nums1) /…
给定两个大小为 m 和 n 的有序数组 nums1和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 不会同时为空. 示例 1: nums1 = [1, 3] nums2 = [2] 则中位数是 2.0 示例 2: nums1 = [1, 2] nums2 = [3, 4] 则中位数是 (2 + 3)/2 = 2.5 这道题让我们求两个有序数组的中位数,而且限制了时间复杂度为 O(log (m+n))…
题目: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 不会同时为空. 示例 1: nums1 = [1, 3] nums2 = [2] 则中位数是 2.0 示例 2: nums1 = [1, 2] nums2 = [3, 4] 则中位数是 (2 + 3)/2 = 2.5 来源:力扣(LeetCode) 链接:https://leetcode-c…
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). You may assume nums1 and nums2 cannot be both empty. Example 1: nums1 = [1, 3]…